Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OD.agda @ 187:ac872f6b8692
add Todo
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Jul 2019 11:08:24 +0900 |
parents | 914cc522c53a |
children | 1f2c8b094908 |
line wrap: on
line diff
--- a/OD.agda Mon Jul 22 18:49:38 2019 +0900 +++ b/OD.agda Tue Jul 23 11:08:24 2019 +0900 @@ -70,12 +70,11 @@ -- contra-position of mimimulity of supermum required in Power Set Axiom -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) - -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) -- mimimul and x∋minimul is an Axiom of choice minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) - -- + -- minimulity (may proved by ε-induction ) minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) _∋_ : { n : Level } → ( a x : OD {n} ) → Set n @@ -102,8 +101,8 @@ lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) -otrans : {n : Level} {a x : Ordinal {n} } → def (Ord a) x → { y : Ordinal {n} } → y o< x → def (Ord a) y -otrans {n} {a} {x} x<a {y} y<x = ordtrans y<x x<a +otrans : {n : Level} {a x y : Ordinal {n} } → def (Ord a) x → def (Ord x) y → def (Ord a) y +otrans x<a y<x = ordtrans y<x x<a ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} ∅3 {n} {x} = TransFinite {n} c2 c3 x where @@ -159,11 +158,6 @@ c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x c≤-refl x = case1 refl -∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a -∋→o< {n} {a} {x} lt = t where - t : (od→ord x) o< (od→ord a) - t = c<→o< {suc n} {x} {a} lt - o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} o∅≡od∅ {n} = ==→o≡ lemma where lemma0 : {x : Ordinal} → def (ord→od o∅) x → def od∅ x @@ -177,12 +171,6 @@ ord-od∅ : {n : Level} → od→ord (od∅ {suc n}) ≡ o∅ {suc n} ord-od∅ {n} = sym ( subst (λ k → k ≡ od→ord (od∅ {suc n}) ) diso (cong ( λ k → od→ord k ) o∅≡od∅ ) ) -o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) -o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where - -o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y -o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) - ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n} eq→ ∅0 {w} (lift ()) eq← ∅0 {w} (case1 ()) @@ -311,8 +299,6 @@ empty x (case1 ()) empty x (case2 ()) - ord-⊆ : ( t x : OD {suc n} ) → _⊆_ t (Ord (od→ord t )) {x} - ord-⊆ t x lt = c<→o< lt o<→c< : {x y : Ordinal {suc n}} {z : OD {suc n}}→ x o< y → _⊆_ (Ord x) (Ord y) {z} o<→c< lt lt1 = ordtrans lt1 lt