Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OD.agda @ 306:b07fc3ef5aab
fix sup
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jun 2020 20:33:19 +0900 |
parents | 4804f3f3485f |
children | d5c5d87b72df |
line wrap: on
line diff
--- a/OD.agda Mon Jun 29 18:37:31 2020 +0900 +++ b/OD.agda Mon Jun 29 20:33:19 2020 +0900 @@ -100,11 +100,8 @@ diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y -- supermum as Replacement Axiom ( corresponding Ordinal of OD has maximum ) - sup-od : ( HOD → HOD ) → HOD - sup-c< : ( ψ : HOD → HOD ) → ∀ {x : HOD } → def (od ( sup-od ψ )) (od→ord ( ψ x )) - -- contra-position of mimimulity of supermum required in Power Set Axiom which we don't use - -- sup-x : {n : Level } → ( OD → Ordinal ) → Ordinal - -- sup-lb : {n : Level } → { ψ : OD → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) + sup-o : (A : HOD) → (( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal + sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ postulate odAxiom : ODAxiom open ODAxiom odAxiom @@ -125,10 +122,10 @@ od∅ : HOD od∅ = Ord o∅ -sup-o : ( HOD → Ordinal ) → Ordinal -sup-o = {!!} -sup-o< : { ψ : HOD → Ordinal } → ∀ {x : HOD } → ψ x o< sup-o ψ -sup-o< = {!!} +sup-od : ( HOD → HOD ) → HOD +sup-od = {!!} +sup-c< : ( ψ : HOD → HOD ) → ∀ {x : HOD } → def (od ( sup-od ψ )) (od→ord ( ψ x )) +sup-c< = {!!} odef : HOD → Ordinal → Set n odef A x = def ( od A ) x @@ -147,7 +144,7 @@ x c< a = a ∋ x cseq : {n : Level} → HOD → HOD -cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = ? } where +cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = {!!} } where odef-subst : {Z : HOD } {X : Ordinal }{z : HOD } {x : Ordinal }→ odef Z X → Z ≡ z → X ≡ x → odef z x odef-subst df refl refl = df @@ -229,7 +226,7 @@ ZFSubset A x = record { od = record { def = λ y → odef A y ∧ odef x y } ; odmax = {!!} ; <odmax = {!!} } -- roughly x = A → Set OPwr : (A : HOD ) → HOD -OPwr A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A x) ) ) +OPwr A = Ord ( sup-o {!!} {!!} ) -- ( λ x → od→ord ( ZFSubset A x) ) ) -- _⊆_ : ( A B : HOD ) → ∀{ x : HOD } → Set n -- _⊆_ A B {x} = A ∋ x → B ∋ x @@ -280,7 +277,7 @@ Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( ord→od x )) } ; odmax = {!!} ; <odmax = {!!} } Replace : HOD → (HOD → HOD ) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ x))) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } + Replace X ψ = record { od = record { def = λ x → (x o< sup-o {!!} {!!} ) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = {!!} ; <odmax = {!!} } Union : HOD → HOD @@ -406,8 +403,8 @@ lemma1 : {a : Ordinal } { t : HOD } → (eq : ZFSubset (Ord a) t =h= t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) - lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) x)) - lemma = sup-o< + lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o {!!} {!!} -- (λ x → od→ord (ZFSubset (Ord a) x)) + lemma = {!!} -- sup-o< -- -- Every set in HOD is a subset of Ordinals, so make OPwr (Ord (od→ord A)) first @@ -444,9 +441,9 @@ ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ t ∎ - lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ x)) - lemma1 = subst (λ k → od→ord k o< sup-o (λ x → od→ord (A ∩ x))) - lemma4 (sup-o< {λ x → od→ord (A ∩ x)} ) + lemma1 : od→ord t o< sup-o {!!} {!!} -- (λ x → od→ord (A ∩ x)) + lemma1 = subst (λ k → od→ord k o< sup-o {!!} {!!}) -- (λ x → od→ord (A ∩ x))) + lemma4 {!!} -- (sup-o< {λ x → od→ord (A ∩ x)} ) lemma2 : odef (in-codomain (OPwr (Ord (od→ord A))) (_∩_ A)) (od→ord t) lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t))