Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal.agda @ 91:b4742cf4ef97
infinity axiom done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jun 2019 18:24:32 +0900 |
parents | 975e72ae0541 |
children | 4659a815b70d |
line wrap: on
line diff
--- a/ordinal.agda Wed Jun 05 14:35:32 2019 +0900 +++ b/ordinal.agda Wed Jun 05 18:24:32 2019 +0900 @@ -242,6 +242,15 @@ omxxx : {n : Level} ( x : Ordinal {suc n} ) → omax x (omax x x ) ≡ osuc (osuc x) omxxx {n} x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) +open _∧_ + +osuc2 : {n : Level} ( x y : Ordinal {suc n} ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) +proj1 (osuc2 {n} x y) (case1 lt) = case1 lt +proj1 (osuc2 {n} x y) (case2 (s< lt)) = case2 lt +proj2 (osuc2 {n} x y) (case1 lt) = case1 lt +proj2 (osuc2 {n} x y) (case2 lt) with d<→lv lt +... | refl = case2 (s< lt) + -- omax≡ (omax x x ) (osuc x) (omxx x) OrdTrans : {n : Level} → Transitive {suc n} _o≤_