Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff filter.agda @ 300:e70980bd80c7
-- the set of finite partial functions from ω to 2
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Jun 2020 15:12:43 +0900 |
parents | 42f89e5efb00 |
children | b012a915bbb5 |
line wrap: on
line diff
--- a/filter.agda Mon Jun 15 18:15:48 2020 +0900 +++ b/filter.agda Tue Jun 23 15:12:43 2020 +0900 @@ -119,28 +119,17 @@ lemma : (p : OD) → p ⊆ L → filter P ∋ (p ∪ (L \ p)) lemma p p⊆L = subst (λ k → filter P ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L -generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) -generated-filter {L} P p = {!!} - record Dense (P : OD ) : Set (suc n) where field dense : OD incl : dense ⊆ P dense-f : OD → OD - dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) - --- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) - -infinite = ZF.infinite OD→ZF + dense-d : { p : OD} → P ∋ p → dense ∋ dense-f p + dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) -module in-countable-ordinal {n : Level} where - - import ordinal - - -- open ordinal.C-Ordinal-with-choice - - Hω2 : Filter (Power (Power infinite)) - Hω2 = {!!} +-- the set of finite partial functions from ω to 2 +-- +-- Hω2 : Filter (Power (Power infinite)) record Ideal ( L : OD ) : Set (suc n) where