Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal-definable.agda @ 72:f39f1a90d154
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jun 2019 14:43:05 +0900 |
parents | d088eb66564e |
children | dd430a95610f |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat Jun 01 10:23:53 2019 +0900 +++ b/ordinal-definable.agda Sat Jun 01 14:43:05 2019 +0900 @@ -331,9 +331,9 @@ isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair - ; union-u = {!!} - ; union→ = {!!} - ; union← = {!!} + ; union-u = union-u + ; union→ = union→ + ; union← = union← ; empty = empty ; power→ = {!!} ; power← = {!!} @@ -353,19 +353,19 @@ empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () union-u : (X z : OD {suc n}) → Union X ∋ z → OD {suc n} - union-u X z U>z with od→ord X | osuc (od→ord z ) - union-u X z (case1 (s≤s z≤n)) | record { lv = .(Suc _) ; ord = ord₁ } | record { lv = .0 ; ord = ord₂ } = {!!} - union-u X z (case1 (s≤s (s≤s x))) | record { lv = .(Suc (Suc _)) ; ord = ord₁ } | record { lv = .(Suc _) ; ord = ord₂ } = {!!} - union-u X z (case2 Φ<) | record { lv = lv₁ ; ord = .(OSuc lv₁ _) } | record { lv = .lv₁ ; ord = .(Φ lv₁) } = {!!} - union-u X z (case2 (s< x)) | record { lv = lv₁ ; ord = .(OSuc lv₁ _) } | record { lv = .lv₁ ; ord = .(OSuc lv₁ _) } = {!!} - union-u X z (case2 ℵΦ<) | record { lv = .(Suc _) ; ord = .(ℵ _) } | record { lv = .(Suc _) ; ord = .(Φ (Suc _)) } = {!!} - union-u X z (case2 (ℵ< x)) | record { lv = .(Suc _) ; ord = .(ℵ _) } | record { lv = .(Suc _) ; ord = .(OSuc (Suc _) _) } = {!!} - union-u X z (case2 ℵs<) | record { lv = .(Suc _) ; ord = .(OSuc (Suc _) (ℵ _)) } | record { lv = .(Suc _) ; ord = .(ℵ _) } = {!!} - union-u X z (case2 (ℵss< x)) | record { lv = .(Suc _) ; ord = .(OSuc (Suc _) _) } | record { lv = .(Suc _) ; ord = .(ℵ _) } = {!!} - union→ : (X x y : OD {suc n}) → X ∋ x → x ∋ y → Union X ∋ y - union→ X x y X∋x x∋y = {!!} -- c<→o< (transitive {n} {X} {x} {y} X∋x x∋y ) - union← : (X z : OD {suc n}) → (X∋z : Union X ∋ z) → ((Union X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z)) - union← = {!!} + union-u X z U>z = ord→od ( osuc ( od→ord z ) ) + union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → union-u X z U>z ∋ z + union-lemma-u {X} {z} U>z = lemma <-osuc where + lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz + lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl diso + union→ : (X z u : OD) → (Union X ∋ u) ∧ (u ∋ z) → Union X ∋ z + union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) + union→ X y u xx | tri< a ¬b ¬c = {!!} + union→ X y u xx | tri≈ ¬a b ¬c = {!!} + union→ X y u xx | tri> ¬a ¬b c = {!!} + -- c<→o< (transitive {n} {X} {x} {y} X∋x x∋y ) + union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z ) + union← X z X∋z = record { proj1 = {!!} ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)