Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal-definable.agda @ 95:f3da2c87cee0
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jun 2019 17:33:09 +0900 |
parents | 4659a815b70d |
children | f239ffc27fd0 |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat Jun 08 13:18:10 2019 +0900 +++ b/ordinal-definable.agda Sat Jun 08 17:33:09 2019 +0900 @@ -5,13 +5,10 @@ open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) - open import Relation.Binary.PropositionalEquality - open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary - open import Relation.Binary open import Relation.Binary.Core @@ -26,16 +23,6 @@ open Ordinal -postulate - od→ord : {n : Level} → OD {n} → Ordinal {n} - ord→od : {n : Level} → Ordinal {n} → OD {n} - -_∋_ : { n : Level } → ( a x : OD {n} ) → Set n -_∋_ {n} a x = def a ( od→ord x ) - -_c<_ : { n : Level } → ( x a : OD {n} ) → Set n -x c< a = a ∋ x - record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x @@ -55,19 +42,37 @@ eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } -_c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) -a c≤ b = (a ≡ b) ∨ ( b ∋ a ) - od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } postulate - c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y - o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y - oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x - diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x - sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} - sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ + od→ord : {n : Level} → OD {n} → Ordinal {n} + ord→od : {n : Level} → Ordinal {n} → OD {n} + c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y + o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x + oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x + diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x + sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} + sup-o< : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ + +_∋_ : { n : Level } → ( a x : OD {n} ) → Set n +_∋_ {n} a x = def a ( od→ord x ) + +_c<_ : { n : Level } → ( x a : OD {n} ) → Set n +x c< a = a ∋ x + +_c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) +a c≤ b = (a ≡ b) ∨ ( b ∋ a ) + +def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x +def-subst df refl refl = df + +sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} +sup-od ψ = ord→od ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) + +sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) +sup-c< {n} ψ {x} = def-subst {n} {_} {_} {sup-od ψ} {od→ord ( ψ x )} + ( o<→c< ( sup-o< ( λ y → od→ord (ψ (ord→od y ))) {od→ord x } )) refl (cong ( λ k → od→ord (ψ k) ) oiso) ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) ∅1 {n} x (lift ()) @@ -89,16 +94,13 @@ ... | t with t (case2 (s< s<refl ) ) c3 lx (OSuc .lx x₁) d not | t | () -def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x -def-subst df refl refl = df - transitive : {n : Level } { z y x : OD {suc n} } → z ∋ y → y ∋ x → z ∋ x transitive {n} {z} {y} {x} z∋y x∋y with ordtrans ( c<→o< {suc n} {x} {y} x∋y ) ( c<→o< {suc n} {y} {z} z∋y ) ... | t = lemma0 (lemma t) where - lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) + lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord x) lemma xo<z = o<→c< xo<z - lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) - lemma0 dz = def-subst {suc n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) + lemma0 : def ( ord→od ( od→ord z )) ( od→ord x) → def z (od→ord x) + lemma0 dz = def-subst {suc n} { ord→od ( od→ord z )} { od→ord x} dz (oiso) refl record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where field @@ -144,11 +146,11 @@ o<→o> : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with - yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case1 lt )) oiso diso ) + yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case1 lt )) oiso refl ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) ... | () o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with - yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case2 lt )) oiso diso ) + yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case2 lt )) oiso refl ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) ... | () @@ -161,10 +163,10 @@ ≡-def : {n : Level} → { x : Ordinal {suc n} } → x ≡ od→ord (record { def = λ z → z o< x } ) ≡-def {n} {x} = ==→o≡ {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where lemma : ord→od x == record { def = λ z → z o< x } - eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso diso t where - t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) - t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso)) - eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} ( o<→c< {suc n} {_} {_} z ) refl diso + eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso refl (subst (λ k → (od→ord ( ord→od w)) o< k ) diso t ) where + t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) + t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso)) + eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} ( o<→c< {suc n} {_} {_} z ) refl refl od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) @@ -175,8 +177,8 @@ t = c<→o< {suc n} {x} {a} lt o<∋→ : {n : Level} → { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x -o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso diso t where - t : def (ord→od (od→ord a)) (od→ord (ord→od (od→ord x))) +o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso refl t where + t : def (ord→od (od→ord a)) (od→ord x) t = o<→c< {suc n} {od→ord x} {od→ord a} lt o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} @@ -199,9 +201,9 @@ tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) -tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso diso) (o<→¬== a) ( o<→¬c> a ) +tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso refl) (o<→¬== a) ( o<→¬c> a ) tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) -tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso diso) +tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso refl) c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ c<> {n} {x} {y} x<y y<x with tri-c< x y @@ -240,13 +242,13 @@ lemma1 : od→ord (ord→od o∅) ≡ od→ord od∅ lemma1 = cong ( λ k → od→ord k ) o∅≡od∅ lemma o∅ ne | yes refl | () - lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅≡od∅ (o<→c< (∅5 ¬p)) + lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅≡od∅ (o<→c< (subst (λ k → k o< ox ) (sym diso) (∅5 ¬p)) ) -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) -Def : OD {suc n} → OD {suc n} -Def X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } +Def : {n : Level} → OD {suc n} → OD {suc n} +Def {n} X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} @@ -313,15 +315,15 @@ empty x () --- Power X = record { def = λ t → ∀ (x : Ordinal {suc n} ) → def (ord→od t) x → def X x } power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = ? + power→ A t P∋t {x} t∋x = {!!} power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A z _ = ? + power← A t t→A z _ = {!!} union-u : (X z : OD {suc n}) → Union X ∋ z → OD {suc n} union-u X z U>z = ord→od ( osuc ( od→ord z ) ) union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → union-u X z U>z ∋ z union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz - lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl diso + lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl refl union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) union→ X y u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) @@ -331,7 +333,7 @@ lemma refl lt = lt union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u X z X∋z) ∧ (union-u X z X∋z ∋ z ) - union← X z X∋z = record { proj1 = def-subst {suc n} (o<→c< X∋z) oiso refl ; proj2 = union-lemma-u X∋z } + union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (union-u X z X∋z)} (o<→c< X∋z) oiso (sym diso) ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) @@ -378,8 +380,8 @@ infinite : OD {suc n} infinite = ord→od ( omega ) infinity∅ : ord→od ( omega ) ∋ od∅ {suc n} - infinity∅ = def-subst {suc n} {_} {od→ord (ord→od o∅)} {infinite} {od→ord od∅} - (o<→c< ( case1 (s≤s z≤n ))) refl (cong (λ k → od→ord k) o∅≡od∅ ) + infinity∅ = def-subst {suc n} {_} {o∅} {infinite} {od→ord od∅} + (o<→c< ( case1 (s≤s z≤n ))) refl (subst ( λ k → ( k ≡ od→ord od∅ )) diso (cong (λ k → od→ord k) o∅≡od∅ )) infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where t : od→ord x o< od→ord (ord→od (omega))