Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/LEMC.agda @ 1199:1338b6c6a9b6
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 Mar 2023 10:42:05 +0900 |
parents | e086a266c6b7 |
children | 45cd80181a29 |
line wrap: on
line source
open import Level open import Ordinals open import logic open import Relation.Nullary module LEMC {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open import zfc open HOD postulate p∨¬p : ( p : Set n) → p ∨ ( ¬ p ) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-elim : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-elim {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) -- by-contradiction : {A : Set n} {B : A → Set n} → ¬ ( (a : A ) → ¬ B a ) → A -- by-contradiction {A} {B} not with p∨¬p A -- ... | case2 ¬a = ⊥-elim (not (λ a → ⊥-elim (¬a a ))) -- ... | case1 a = a power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t t∋x = subst (λ k → odef A k ) &iso ( t1 (subst (λ k → odef t k ) (sym &iso) t∋x)) where t1 : {x : HOD } → t ∋ x → A ∋ x t1 = power→ A t PA∋t --- With assuption of HOD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : Ordinal ) : Set n where field a-choice : Ordinal is-in : odef (* X) a-choice open choiced -- ∋→d : ( a : HOD ) { x : HOD } → * (& a) ∋ x → X ∋ * (a-choice (choice-func X not)) -- ∋→d a lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt oo∋ : { a : HOD} { x : Ordinal } → odef (* (& a)) x → a ∋ * x oo∋ lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt ∋oo : { a : HOD} { x : Ordinal } → a ∋ * x → odef (* (& a)) x ∋oo lt = subst₂ (λ j k → odef j k ) (sym *iso) &iso lt OD→ZFC : ZFC OD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → * (a-choice (choice-func X not) ); choice = λ A {X} A∋X not → oo∋ (is-in (choice-func X not)) } where -- -- the axiom choice from LEM and OD ordering -- choice-func : (X : HOD ) → ¬ ( X =h= od∅ ) → choiced (& X) choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set n ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ odef X x )) ∨ choiced (& X) lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite0 {ψ} induction ox where ∀-imply-or : {A : Ordinal → Set n } {B : Set n } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p ((x : Ordinal ) → A x) -- LEM ∀-imply-or {A} {B} ∀AB | case1 t = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x not )) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( * x) ... | yes p = case2 ( record { a-choice = x ; is-in = ∋oo p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → odef X y → ⊥) ∨ choiced (& X) lemma1 y with ∋-p X (* y) lemma1 y | yes y<X = case2 ( record { a-choice = y ; is-in = ∋oo y<X } ) lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (d→∋ X y<X) ) lemma : ((y : Ordinal) → y o< x → odef X y → ⊥) ∨ choiced (& X) lemma = ∀-imply-or lemma1 odef→o< : {X : HOD } → {x : Ordinal } → odef X x → x o< & X odef→o< {X} {x} lt = o<-subst {_} {_} {x} {& X} ( c<→o< ( subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) lt )) &iso &iso have_to_find : choiced (& X) have_to_find = dont-or (lemma-ord (& X )) ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → x o< (& X) → odef X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (odef→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) } -- -- axiom regurality from ε-induction (using axiom of choice above) -- -- from https://math.stackexchange.com/questions/2973777/is-it-possible-to-prove-regularity-with-transfinite-induction-only -- record Minimal (x : HOD) : Set (suc n) where field min : HOD x∋min : x ∋ min min-empty : (y : HOD ) → ¬ ( min ∋ y) ∧ (x ∋ y) open Minimal open _∧_ induction : {x : HOD} → ({y : HOD} → x ∋ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u ) → (u : HOD ) → (u∋x : u ∋ x) → Minimal u induction {x} prev u u∋x with p∨¬p ((y : Ordinal ) → ¬ (odef x y) ∧ (odef u y)) ... | case1 P = record { min = x ; x∋min = u∋x ; min-empty = λ y → P (& y) } ... | case2 NP = min2 where p : HOD p = record { od = record { def = λ y1 → odef x y1 ∧ odef u y1 } ; odmax = omin (odmax x) (odmax u) ; <odmax = lemma } where lemma : {y : Ordinal} → OD.def (od x) y ∧ OD.def (od u) y → y o< omin (odmax x) (odmax u) lemma {y} lt = min1 (<odmax x (proj1 lt)) (<odmax u (proj2 lt)) np : ¬ (p =h= od∅) np p∅ = NP (λ y p∋y → ∅< {p} {_} (d→∋ p p∋y) p∅ ) y1choice : choiced (& p) y1choice = choice-func p np y1 : HOD y1 = * (a-choice y1choice) y1prop : (x ∋ y1) ∧ (u ∋ y1) y1prop = oo∋ (is-in y1choice) min2 : Minimal u min2 = prev (proj1 y1prop) u (proj2 y1prop) Min2 : (x : HOD) → (u : HOD ) → (u∋x : u ∋ x) → Minimal u Min2 x u u∋x = (ε-induction {λ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u } induction x u u∋x ) cx : {x : HOD} → ¬ (x =h= od∅ ) → choiced (& x ) cx {x} nx = choice-func x nx minimal : (x : HOD ) → ¬ (x =h= od∅ ) → HOD minimal x ne = min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) ) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) x∋minimal x ne = x∋min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) ) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) minimal-1 x ne y = min-empty (Min2 (* (a-choice (cx ne) )) x ( oo∋ (is-in (cx ne)))) y