Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/PFOD.agda @ 1199:1338b6c6a9b6
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 01 Mar 2023 10:42:05 +0900 |
parents | 375615f9d60f |
children | 362e43a1477c |
line wrap: on
line source
open import Level open import Ordinals module PFOD {n : Level } (O : Ordinals {n}) where import filter open import zf open import logic -- open import partfunc {n} O import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgebra open BAlgebra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open filter O open _∧_ open _∨_ open Bool open HOD ------- -- the set of finite partial functions from ω to 2 -- -- open import Data.List hiding (filter) open import Data.Maybe import OPair open OPair O data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where hφ : Hω2 0 o∅ h0 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (& (Union ((< nat→ω i , nat→ω 0 >) , * x ))) h1 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (& (Union ((< nat→ω i , nat→ω 1 >) , * x ))) he : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) x record Hω2r (x : Ordinal) : Set n where field count : Nat hω2 : Hω2 count x open Hω2r HODω2 : HOD HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = next o∅ ; <odmax = odmax0 } where P : (i j : Nat) (x : Ordinal ) → HOD P i j x = ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) , * x nat1 : (i : Nat) (x : Ordinal) → & (nat→ω i) o< next x nat1 i x = next< nexto∅ ( <odmax infinite (ω∋nat→ω {i})) lemma1 : (i j : Nat) (x : Ordinal ) → osuc (& (P i j x)) o< next x lemma1 i j x = osuc<nx (pair-<xy (pair-<xy (pair-<xy (nat1 i x) (nat1 i x) ) (pair-<xy (nat1 i x) (nat1 j x) ) ) (subst (λ k → k o< next x) (sym &iso) x<nx )) lemma : (i j : Nat) (x : Ordinal ) → & (Union (P i j x)) o< next x lemma i j x = next< (lemma1 i j x ) ho< odmax0 : {y : Ordinal} → Hω2r y → y o< next o∅ odmax0 {y} r with hω2 r ... | hφ = x<nx ... | h0 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 0 x) ... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 1 x) ... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx 3→Hω2 : List (Maybe Two) → HOD 3→Hω2 t = list→hod t 0 where list→hod : List (Maybe Two) → Nat → HOD list→hod [] _ = od∅ list→hod (just i0 ∷ t) i = Union (< nat→ω i , nat→ω 0 > , ( list→hod t (Suc i) )) list→hod (just i1 ∷ t) i = Union (< nat→ω i , nat→ω 1 > , ( list→hod t (Suc i) )) list→hod (nothing ∷ t) i = list→hod t (Suc i ) Hω2→3 : (x : HOD) → HODω2 ∋ x → List (Maybe Two) Hω2→3 x = lemma where lemma : { y : Ordinal } → Hω2r y → List (Maybe Two) lemma record { count = 0 ; hω2 = hφ } = [] lemma record { count = (Suc i) ; hω2 = (h0 hω3) } = just i0 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (h1 hω3) } = just i1 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (he hω3) } = nothing ∷ lemma record { count = i ; hω2 = hω3 } ω→2 : HOD ω→2 = Power infinite ω2→f : (x : HOD) → ω→2 ∋ x → Nat → Two ω2→f x lt n with ODC.∋-p O x (nat→ω n) ω2→f x lt n | yes p = i1 ω2→f x lt n | no ¬p = i0 fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n fω→2-sel f x = (infinite ∋ x) ∧ ( (lt : odef infinite (& x) ) → f (ω→nat x lt) ≡ i1 ) fω→2 : (Nat → Two) → HOD fω→2 f = Select infinite (fω→2-sel f) open _==_ import Axiom.Extensionality.Propositional postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f ω2∋f f = power← infinite (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {infinite} )) lt)) ω→2f≡i1 : (X i : HOD) → (iω : infinite ∋ i) → (lt : ω→2 ∋ X ) → ω2→f X lt (ω→nat i iω) ≡ i1 → X ∋ i ω→2f≡i1 X i iω lt eq with ODC.∋-p O X (nat→ω (ω→nat i iω)) ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → X ∋ k ) (nat→ω-iso iω) p ω2→f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω2→f X lt ) =h= X eq→ (ω2→f-iso X lt) {x} ⟪ ωx , ⟪ ωx1 , iso ⟫ ⟫ = le00 where le00 : odef X x le00 = subst (λ k → odef X k) &iso ( ω→2f≡i1 _ _ ωx1 lt (iso ωx1) ) eq← (ω2→f-iso X lt) {x} Xx = ⟪ subst (λ k → odef infinite k) &iso le02 , ⟪ le02 , le01 ⟫ ⟫ where le02 : infinite ∋ * x le02 = power→ infinite _ lt (subst (λ k → odef X k) (sym &iso) Xx) le01 : (wx : odef infinite (& (* x))) → ω2→f X lt (ω→nat (* x) wx) ≡ i1 le01 wx with ODC.∋-p O X (nat→ω (ω→nat _ wx) ) ... | yes p = refl ... | no ¬p = ⊥-elim ( ¬p (subst (λ k → odef X k ) le03 Xx )) where le03 : x ≡ & (nat→ω (ω→nato wx)) le03 = subst₂ (λ j k → j ≡ k ) &iso refl (cong (&) (sym ( nat→ω-iso wx ) ) ) fω→2-iso : (f : Nat → Two) → ω2→f ( fω→2 f ) (ω2∋f f) ≡ f fω→2-iso f = f-extensionality (λ x → le01 x ) where le01 : (x : Nat) → ω2→f (fω→2 f) (ω2∋f f) x ≡ f x le01 x with ODC.∋-p O (fω→2 f) (nat→ω x) le01 x | yes p = subst (λ k → i1 ≡ f k ) (ω→nat-iso0 x (proj1 (proj2 p)) (trans *iso *iso)) (sym ((proj2 (proj2 p)) le02)) where le02 : infinite-d (& (* (& (nat→ω x)))) le02 = proj1 (proj2 p ) le01 x | no ¬p = sym ( ¬i1→i0 le04 ) where le04 : ¬ f x ≡ i1 le04 fx=1 = ¬p ⟪ ω∋nat→ω {x} , ⟪ subst (λ k → infinite-d k) (sym &iso) (ω∋nat→ω {x}) , le05 ⟫ ⟫ where le05 : (lt : infinite-d (& (* (& (nat→ω x))))) → f (ω→nato lt) ≡ i1 le05 lt = trans (cong f (ω→nat-iso0 x lt (trans *iso *iso))) fx=1