Mercurial > hg > Members > kono > Proof > ZF-in-agda
view Todo @ 1458:171c3f3cdc6b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 26 Aug 2023 08:37:08 +0900 |
parents | f4dac8be0a01 |
children | e8c166541c86 |
line wrap: on
line source
Sun Jul 9 09:42:20 JST 2023 Assume countable dense OD in Ordinal as L if Power ω ∩ L is cardinal, ω c< (Power ω ∩ L) c< Power ω Sat May 13 10:51:35 JST 2023 use Filter (ZFP (Proj1 (ZFP PQ)) (Proj2 (ZFP PQ)) for projection of Ultra filter tranfinite induciton on well-founded set Sat Aug 1 13:16:53 JST 2020 P Generic Filter as a ZF model ( -- this is no good ) define Definition for L ( -- this is no good ) Tue Jul 23 11:02:50 JST 2019 define cardinals ... done scheme on CH is no good in HOD prove CH in OD→ZF define Ultra filter ... done define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive ... fixed remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite