Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/VL.agda @ 1483:2435deeecda9
maxfilter fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 30 Jun 2024 19:36:51 +0900 |
parents | 32001d93755b |
children |
line wrap: on
line source
{-# OPTIONS --cubical-compatible --safe #-} open import Level open import Ordinals open import logic open import Relation.Nullary open import Level open import Ordinals import HODBase import OD open import Relation.Nullary module VL {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O) (ho< : OD.ODAxiom-ho< O HODAxiom ) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Empty import OrdUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal import ODUtil open import logic open import nat open OrdUtil O open ODUtil O HODAxiom ho< open _∧_ open _∨_ open Bool open HODBase._==_ open HODBase.ODAxiom HODAxiom open OD O HODAxiom open HODBase.HOD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) -- The cumulative hierarchy -- V 0 := ∅ -- V α + 1 := P ( V α ) -- V α := ⋃ { V β | β < α } V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD V1 x V0 with trio< x o∅ V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ V1 x V0 | tri> ¬a ¬b c with Oprev-p x V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) V1 x V0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } record VOrd (x : Ordinal) : Set n where field β : Ordinal ov : odef (TransFinite V1 β) x V : OD V = record { def = λ x → VOrd x } record Vn : Set n where field x : Ordinal β : Ordinal ov : odef (TransFinite V1 β) x -- Vn∅ : Vn -- Vn∅ = record { x = o∅ ; β = o∅ ; ov = ? } -- vsuc : Vn → Vn -- vsuc v = ? -- v< : Vn → Vn → Set n -- v< x y = ? -- IsVOrd : IsOrdinals Vn Vn∅ vsuc ? -- IsVOrd = ?