view Todo @ 223:2e1f19c949dc

sepration of ordinal from OD
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 09 Aug 2019 17:57:58 +0900
parents ac872f6b8692
children bca043423554
line wrap: on
line source

Tue Jul 23 11:02:50 JST 2019

    define cardinals 
    prove CH in OD→ZF
    define Ultra filter
    define L M : ZF ZFSet = M is an OD
    define L N : ZF ZFSet = N = G M (G is a generic fitler on M )
    prove ¬ CH on L N
    prove no choice function on L N

Mon Jul  8 19:43:37 JST 2019

    ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive

    remove ord-Ord  and prove with some assuption in HOD.agda
        union, power set, replace, inifinite