Mercurial > hg > Members > kono > Proof > ZF-in-agda
view VL.agda @ 422:44a484f17f26
syntax *, &, ⟪ , ⟫
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Aug 2020 11:06:29 +0900 |
parents | 3dda56a5befd |
children | cc7909f86841 |
line wrap: on
line source
open import Level open import Ordinals module VL {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom -- import ODC open _∧_ open _∨_ open Bool open HOD -- The cumulative hierarchy -- V 0 := ∅ -- V α + 1 := P ( V α ) -- V α := ⋃ { V β | β < α } V : ( β : Ordinal ) → HOD V β = TransFinite1 V1 β where V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD V1 x V0 with trio< x o∅ V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ V1 x V0 | tri> ¬a ¬b c with Oprev-p x V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) V1 x V0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } -- -- L ⊆ HOD ⊆ V -- -- HOD=V : (x : HOD) → V (odmax x) ∋ x -- HOD=V x = {!!} -- -- Definition for Power Set -- record Definitions : Set (suc n) where field Definition : HOD → HOD open Definitions Df : Definitions → (x : HOD) → HOD Df D x = Power x ∩ Definition D x -- The constructible Sets -- L 0 := ∅ -- L α + 1 := Df (L α) -- Definable Power Set -- V α := ⋃ { L β | β < α } L : ( β : Ordinal ) → Definitions → HOD L β D = TransFinite1 L1 β where L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD L1 x L0 with trio< x o∅ L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ L1 x L0 | tri> ¬a ¬b c with Oprev-p x L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) L1 x L0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } V=L0 : Set (suc n) V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y }