Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/OPair.agda @ 691:46d05d12df57
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Jul 2022 05:18:41 +0900 |
parents | a5f8084b8368 |
children | 55ab5de1ae02 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module OPair {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODUtil import OrdUtil open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open OD O open OD.OD open OD.HOD open ODAxiom odAxiom open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open _∧_ open _∨_ open Bool open _==_ <_,_> : (x y : HOD) → HOD < x , y > = (x , x ) , (x , y ) exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where left : {z : Ordinal} → odef (x , y) z → odef (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t right : {z : Ordinal} → odef (y , x) z → odef (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y xx=zy→x=y {x} {y} eq with trio< (& x) (& y) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where lemma3 : ( x , x ) =h= ( y , z ) lemma3 = ==-trans eq exg-pair lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) ... | refl = refl lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z lemmax : x ≡ x' lemmax with eq→ eq {& (x , x)} (case1 refl) lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' ... | refl = lemma1 (ord→== s ) lemmay : y ≡ y' lemmay with lemmax ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) -- -- unlike ordered pair, ZFProduct is not a HOD data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' -- eq-pair refl refl = HE.refl pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y) = x π1 : { p : HOD } → def ZFProduct (& p) → HOD π1 lt = * (pi1 lt ) pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y π2 : { p : HOD } → def ZFProduct (& p) → HOD π2 lt = * (pi2 lt ) op-cons : { ox oy : Ordinal } → def ZFProduct (& ( < * ox , * oy > )) op-cons {ox} {oy} = pair ox oy def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df p-cons : ( x y : HOD ) → def ZFProduct (& ( < x , y >)) p-cons x y = def-subst {_} {_} {ZFProduct} {& (< x , y >)} (pair (& x) ( & y )) refl ( let open ≡-Reasoning in begin & < * (& x) , * (& y) > ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ & < x , y > ∎ ) op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op op-iso (pair ox oy) = refl p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x p-iso {x} p = ord≡→≡ (op-iso p) p-pi1 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π1 p ≡ x p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) p-pi2 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) ω-pair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & (x , y) o< next m ω-pair lx ly = next< (omax<nx lx ly ) ho< ω-opair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & < x , y > o< next m ω-opair {x} {y} {m} lx ly = lemma0 where lemma0 : & < x , y > o< next m lemma0 = osucprev (begin osuc (& < x , y >) <⟨ osuc<nx ho< ⟩ next (omax (& (x , x)) (& (x , y))) ≡⟨ cong (λ k → next k) (sym ( omax≤ _ _ pair-xx<xy )) ⟩ next (osuc (& (x , y))) ≡⟨ sym (nexto≡) ⟩ next (& (x , y)) ≤⟨ x<ny→≤next (ω-pair lx ly) ⟩ next m ∎ ) where open o≤-Reasoning O _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > product→ {A} {B} {a} {b} A∋a B∋b = λ t → t (& (Replace A (λ a → < a , b >))) ⟪ lemma1 , subst (λ k → odef k (& < a , b >)) (sym *iso) lemma2 ⟫ where lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >))) lemma1 = replacement← B b B∋b lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >) lemma2 = replacement← A a A∋a x<nextA : {A x : HOD} → A ∋ x → & x o< next (odmax A) x<nextA {A} {x} A∋x = ordtrans (c<→o< {x} {A} A∋x) ho< A<Bnext : {A B x : HOD} → & A o< & B → A ∋ x → & x o< next (odmax B) A<Bnext {A} {B} {x} lt A∋x = osucprev (begin osuc (& x) <⟨ osucc (c<→o< A∋x) ⟩ osuc (& A) <⟨ osucc lt ⟩ osuc (& B) <⟨ osuc<nx ho< ⟩ next (odmax B) ∎ ) where open o≤-Reasoning O ZFP : (A B : HOD) → HOD ZFP A B = record { od = record { def = λ x → ord-pair x ∧ ((p : ord-pair x ) → odef A (pi1 p) ∧ odef B (pi2 p) )} ; odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } where lemma : (y : Ordinal) → ( ord-pair y ∧ ((p : ord-pair y) → odef A (pi1 p) ∧ odef B (pi2 p))) → y o< omax (next (odmax A)) (next (odmax B)) lemma y lt with proj1 lt lemma p lt | pair x y with trio< (& A) (& B) lemma p lt | pair x y | tri< a ¬b ¬c = ordtrans (ω-opair (A<Bnext a (subst (λ k → odef A k ) (sym &iso) (proj1 (proj2 lt (pair x y))))) (lemma1 (proj2 (proj2 lt (pair x y))))) (omax-y _ _ ) where lemma1 : odef B y → & (* y) o< next (HOD.odmax B) lemma1 lt = x<nextA {B} (d→∋ B lt) lemma p lt | pair x y | tri≈ ¬a b ¬c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) lemma2 ) (omax-x _ _ ) where lemma2 : & (* y) o< next (HOD.odmax A) lemma2 = ordtrans ( subst (λ k → & (* y) o< k ) (sym b) (c<→o< (d→∋ B ((proj2 (proj2 lt (pair x y))))))) ho< lemma p lt | pair x y | tri> ¬a ¬b c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) (A<Bnext c (subst (λ k → odef B k ) (sym &iso) (proj2 (proj2 lt (pair x y)))))) (omax-x _ _ ) ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ⟪ (pair x y) , p2 ⟫ = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) ))) -- axiom of choice required -- ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFProduct (& x) -- ⊗⊆ZFP {A} {B} {x} lt = subst (λ k → ord-pair (& k )) {!!} op-cons