view src/VL.agda @ 1300:47d3cc596d68

remove next
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 04 Jun 2023 16:58:39 +0900
parents 45cd80181a29
children 171c3f3cdc6b
line wrap: on
line source

open import Level
open import Ordinals
module VL {n : Level } (O : Ordinals {n}) where

open import logic
import OD 
open import Relation.Nullary 
open import Relation.Binary 
open import Data.Empty 
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
import BAlgebra 
open BAlgebra O
open inOrdinal O
import OrdUtil
import ODUtil
open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
--  open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O

open OD O
open OD.OD
open ODAxiom odAxiom
-- import ODC
open _∧_
open _∨_
open Bool
open HOD

-- The cumulative hierarchy 
--    V 0 := ∅ 
--    V α + 1 := P ( V α ) 
--    V α := ⋃ { V β | β < α }

V : ( β : Ordinal ) → HOD
V β = TransFinite  V1 β where
   V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD )  → HOD
   V1 x V0 with trio< x o∅
   V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a)
   V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅
   V1 x V0 | tri> ¬a ¬b c with Oprev-p  x
   V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x  p) <-osuc ))
   V1 x V0 | tri> ¬a ¬b c | no ¬p = 
        record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) →  odef (V0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt }

--
-- L ⊆ HOD ⊆ V
--
-- HOD=V : (x : HOD) → V (odmax x) ∋ x
-- HOD=V x = {!!}

--
-- Definition for Power Set
--
record Definitions  : Set (suc n) where 
   field
      Definition : HOD → HOD   

open Definitions

Df : Definitions → (x : HOD) → HOD
Df D x = Power x ∩ Definition D x 

-- The constructible Sets
--    L 0 := ∅ 
--    L α + 1 := Df (L α)   -- Definable Power Set
--    V α := ⋃ { L β | β < α }

L : ( β : Ordinal ) → Definitions → HOD
L β D = TransFinite  L1 β where
   L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD )  → HOD
   L1 x L0 with trio< x o∅
   L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a)
   L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅
   L1 x L0 | tri> ¬a ¬b c with Oprev-p  x
   L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x  p) <-osuc ))
   L1 x L0 | tri> ¬a ¬b c | no ¬p = 
        record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) →  odef (L0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt }

V=L0 : Set (suc n)
V=L0 = (x : Ordinal) → V x ≡  L x record { Definition = λ y → y }