view ordinal-definable.agda @ 36:4d64509067d0

transitive
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 23 May 2019 02:32:02 +0900
parents c9ad0d97ce41
children f10ceee99d00
line wrap: on
line source

open import Level
module ordinal-definable where

open import zf
open import ordinal

open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 

open import  Relation.Binary.PropositionalEquality

open import Data.Nat.Properties 
open import Data.Empty
open import Relation.Nullary

open import Relation.Binary
open import Relation.Binary.Core

-- Ordinal Definable Set

record OD {n : Level}  : Set (suc n) where
  field
    def : (x : Ordinal {n} ) → Set n

open OD
open import Data.Unit

postulate      
  od→ord : {n : Level} → OD {n} → Ordinal {n}
  ord→od : {n : Level} → Ordinal {n} → OD {n} 

_∋_ : { n : Level } → ( a x : OD {n} ) → Set n
_∋_ {n} a x  = def a ( od→ord x )

_c<_ : { n : Level } → ( a x : OD {n} ) → Set n
x c< a = a ∋ x 

_c≤_ : {n : Level} →  OD {n} →  OD {n} → Set (suc n)
a c≤ b  = (a ≡ b)  ∨ ( b ∋ a )

postulate      
  c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y
  o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y
  oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x
  diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x
  sup-od : {n : Level } → ( OD {n} → OD {n}) →  OD {n}
  sup-c< : {n : Level } → ( ψ : OD {n} →  OD {n}) → ∀ {x : OD {n}} → ψ x  c< sup-od ψ

HOD = OD

od∅ : {n : Level} → HOD {n} 
od∅ {n} = record { def = λ _ → Lift n ⊥ }

∅1 : {n : Level} →  ( x : OD {n} )  → ¬ ( x c< od∅ {n} )
∅1 {n} x (lift ())

∅3 : {n : Level} →  ( x : Ordinal {n})  → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n}
∅3 {n} x = TransFinite {n} c1 c2 c3 x where
   c0 : Nat →  Ordinal {n}  → Set n
   c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x))  → x ≡ o∅ {n}
   c1 : ∀ (lx : Nat ) →  c0 lx (record { lv = Suc lx ; ord = ℵ lx } )  
   c1 lx not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case1 ≤-refl )
   c1 lx not | t | ()
   c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } )
   c2 Zero not = refl
   c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case1 ≤-refl )
   c2 (Suc lx) not | t | ()
   c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx  (record { lv = lx ; ord = x₁ })  → c0 lx (record { lv = lx ; ord = OSuc lx x₁ })
   c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } )
   ... | t with t (case2 Φ< )
   c3 lx (Φ .lx) d not | t | ()
   c3 lx (OSuc .lx x₁) d not with not (  record { lv = lx ; ord = OSuc lx x₁ } )
   ... | t with t (case2 (s< s<refl ) )
   c3 lx (OSuc .lx x₁) d not | t | ()
   c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) }  )
   ... | t with t (case2 (s< (ℵΦ< {_} {_} {Φ (Suc lx)}))) 
   c3 .(Suc lx) (ℵ lx) d not | t | ()

def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z  →  X ≡ x  →  def z x
def-subst df refl refl = df

transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x
transitive  {n} {x} {y} {z} x∋y  z∋y with  ordtrans ( c<→o< {n} {x} {y} x∋y ) (  c<→o< {n} {y} {z} z∋y ) 
... | t = lemma0 (lemma t) where
   lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x )))
   lemma xo<z = o<→c< xo<z
   lemma0 :  def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) →  def z (od→ord x)
   lemma0 dz  = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso)

open Ordinal

HOD→ZF : {n : Level} → ZF {suc n} {suc n}
HOD→ZF {n}  = record { 
    ZFSet = OD {n}
    ; _∋_ = λ a x → Lift (suc n) ( a ∋ x )
    ; _≈_ = _≡_ 
    ; ∅  = od∅
    ; _,_ = _,_
    ; Union = Union
    ; Power = Power
    ; Select = Select
    ; Replace = Replace
    ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero  }  }
    ; isZF = isZF 
 } where
    Replace : OD {n} → (OD {n} → OD {n} ) → OD {n}
    Replace X ψ = sup-od ψ
    Select : OD {n} → (OD {n} → Set (suc n) ) → OD {n}
    Select X ψ = record { def = λ x → select ( ord→od x ) } where
       select : OD {n} → Set n
       select x with ψ x
       ... | t =  Lift n ⊤
    _,_ : OD {n} → OD {n} → OD {n}
    x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) }
    Union : OD {n} → OD {n}
    Union x = record { def = λ y → {z : Ordinal {n}} → def x z  → def (ord→od z) y  }
    Power : OD {n} → OD {n}
    Power x = record { def = λ y → (z : Ordinal {n} ) → ( def x y ∧ def (ord→od z) y )  }
    ZFSet = OD {n}
    _∈_ : ( A B : ZFSet  ) → Set n
    A ∈ B = B ∋ A
    _⊆_ : ( A B : ZFSet  ) → ∀{ x : ZFSet } →  Set n
    _⊆_ A B {x} = A ∋ x →  B ∋ x
    _∩_ : ( A B : ZFSet  ) → ZFSet
    A ∩ B = Select (A , B) (  λ x → (Lift (suc n) ( A ∋ x )) ∧ (Lift (suc n) ( B ∋ x )  ))
    _∪_ : ( A B : ZFSet  ) → ZFSet
    A ∪ B = Select (A , B) (  λ x → (Lift (suc n) ( A ∋ x )) ∨ (Lift (suc n) ( B ∋ x )  ))
    infixr  200 _∈_
    infixr  230 _∩_ _∪_
    infixr  220 _⊆_
    isZF : IsZF (OD {n})  (λ a x → Lift (suc n) ( a ∋ x )) _≡_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero }  })
    isZF = record {
           isEquivalence  = record { refl = refl ; sym = sym ; trans = trans }
       ;   pair  = pair
       ;   union→ = {!!}
       ;   union← = {!!}
       ;   empty = empty
       ;   power→ = {!!}
       ;   power← = {!!}
       ;   extentionality = {!!}
       ;   minimul = minimul
       ;   regularity = {!!}
       ;   infinity∅ = {!!}
       ;   infinity = {!!}
       ;   selection = {!!}
       ;   replacement = {!!}
     } where
         open _∧_ 
         pair : (A B : OD {n} ) → Lift (suc n) ((A , B) ∋ A) ∧ Lift (suc n) ((A , B) ∋ B)
         proj1 (pair A B ) = lift ( case1 refl )
         proj2 (pair A B ) = lift ( case2 refl )
         empty : (x : OD {n} ) → ¬ Lift (suc n) (od∅ ∋ x)
         empty x (lift (lift ()))
         union→ : (X x y : OD {n} ) → Lift (suc n) (X ∋ x) → Lift (suc n) (x ∋ y) → Lift (suc n) (Union X ∋ y)
         union→ X x y (lift X∋x) (lift x∋y) = lift {!!}  where
            lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y
            lemma {z} X∋z = {!!}
         minimul : OD {n} → ( OD {n} ∧ OD {n} )
         minimul x = record { proj1 = record { def = {!!} } ; proj2 = record { def = {!!} } }
         regularity : (x : OD) → ¬ x ≡ od∅ →
                Lift (suc n) (x ∋ proj1 (minimul x)) ∧
                (Select (proj1 (minimul x ) , x) (λ x₁ → Lift (suc n) (proj1 ( minimul x ) ∋ x₁) ∧ Lift (suc n) (x ∋ x₁)) ≡ od∅)
         proj1 ( regularity x non ) = lift lemma where
            lemma : def x (od→ord (proj1 (minimul x)))
            lemma = {!!}
         proj2 ( regularity x non ) = {!!}