view filter.agda @ 287:5de8905a5a2b

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 07 Jun 2020 20:29:12 +0900
parents d9d3654baee1
children ef93c56ad311
line wrap: on
line source

open import Level
open import Ordinals
module filter {n : Level } (O : Ordinals {n})   where

open import zf
open import logic
import OD 

open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import  Relation.Binary.PropositionalEquality
open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 

open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom

open _∧_
open _∨_
open Bool

_∩_ : ( A B : OD  ) → OD
A ∩ B = record { def = λ x → def A x ∧ def B x } 

_∪_ : ( A B : OD  ) → OD
A ∪ B = record { def = λ x → def A x ∨ def B x } 

_\_ : ( A B : OD  ) → OD
A \ B = record { def = λ x → def A x ∧ ( ¬ ( def B x ) ) }


record Filter  ( L : OD  ) : Set (suc n) where
   field
       filter : OD
       proper : ¬ ( filter ∋ od∅ )
       inL :  filter ⊆ L 
       filter1 : { p q : OD } →  q ⊆ L  → filter ∋ p →  p ⊆ q  → filter ∋ q
       filter2 : { p q : OD } → filter ∋ p →  filter ∋ q  → filter ∋ (p ∩ q)

open Filter

L⊆L : (L : OD) → L ⊆ L
L⊆L L = record { incl = λ {x} lt → lt }

L-filter : {L : OD} → (P : Filter L ) → {p : OD} → filter P ∋ p → filter P ∋ L
L-filter {L} P {p} lt = filter1 P {p} {L} (L⊆L L) lt {!!}

prime-filter : {L : OD} → Filter L → ∀ {p q : OD } → Set n
prime-filter {L} P {p} {q} =  filter P ∋ ( p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )

ultra-filter :  {L : OD} → Filter L → ∀ {p : OD } → Set n 
ultra-filter {L} P {p} = L ∋ p →  ( filter P ∋ p ) ∨ (  filter P ∋ ( L \ p) )


filter-lemma1 :  {L : OD} → (P : Filter L)  → ∀ {p q : OD } → ( ∀ (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q}
filter-lemma1 {L} P {p} {q} u lt = {!!}

filter-lemma2 :  {L : OD} → (P : Filter L)  → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) →  ∀ (p : OD ) → ultra-filter {L} P {p} 
filter-lemma2 {L} P prime p with prime {!!}
... | t = {!!}

generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } )
generated-filter {L} P p = record {
     proper = {!!} ; 
     filter = {!!}  ; inL = {!!} ; 
     filter1 = {!!} ; filter2 = {!!}
   }

record Dense  (P : OD ) : Set (suc n) where
   field
       dense : OD
       incl :  dense ⊆ P 
       dense-f : OD → OD
       dense-p :  { p : OD} → P ∋ p  → p ⊆ (dense-f p) 

-- H(ω,2) = Power ( Power ω ) = Def ( Def ω))

infinite = ZF.infinite OD→ZF

module in-countable-ordinal {n : Level} where

   import ordinal

   -- open  ordinal.C-Ordinal-with-choice 
   -- both Power and infinite is too ZF, it is better to use simpler one
   Hω2 : Filter (Power (Power infinite))
   Hω2 = {!!}