Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/bijection.agda @ 1477:88fdc41868f9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Jun 2024 15:57:38 +0900 |
parents | d0b4be1cab0d |
children |
line wrap: on
line source
{-# OPTIONS --cubical-compatible --safe #-} module bijection where open import Level renaming ( zero to Zero ; suc to Suc ) open import Data.Nat open import Data.Maybe open import Data.List hiding ([_] ; sum ) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Unit using ( tt ; ⊤ ) open import Relation.Binary.Core hiding (_⇔_) open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import logic open import nat -- record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where -- field -- fun← : S → R -- fun→ : R → S -- fiso← : (x : R) → fun← ( fun→ x ) ≡ x -- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x -- -- injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) -- injection R S f = (x y : R) → f x ≡ f y → x ≡ y open Bijection bi-trans : {n m l : Level} (R : Set n) (S : Set m) (T : Set l) → Bijection R S → Bijection S T → Bijection R T bi-trans R S T rs st = record { fun← = λ x → fun← rs ( fun← st x ) ; fun→ = λ x → fun→ st ( fun→ rs x ) ; fiso← = λ x → trans (cong (λ k → fun← rs k) (fiso← st (fun→ rs x))) ( fiso← rs x) ; fiso→ = λ x → trans (cong (λ k → fun→ st k) (fiso→ rs (fun← st x))) ( fiso→ st x) } bid : {n : Level} (R : Set n) → Bijection R R bid {n} R = record { fun← = λ x → x ; fun→ = λ x → x ; fiso← = λ _ → refl ; fiso→ = λ _ → refl } bi-sym : {n m : Level} (R : Set n) (S : Set m) → Bijection R S → Bijection S R bi-sym R S eq = record { fun← = fun→ eq ; fun→ = fun← eq ; fiso← = fiso→ eq ; fiso→ = fiso← eq } bi-inject← : {n m : Level} {R : Set n} {S : Set m} → (rs : Bijection R S) → {x y : S} → fun← rs x ≡ fun← rs y → x ≡ y bi-inject← rs {x} {y} eq = subst₂ (λ j k → j ≡ k ) (fiso→ rs _) (fiso→ rs _) (cong (fun→ rs) eq) bi-inject→ : {n m : Level} {R : Set n} {S : Set m} → (rs : Bijection R S) → {x y : R} → fun→ rs x ≡ fun→ rs y → x ≡ y bi-inject→ rs {x} {y} eq = subst₂ (λ j k → j ≡ k ) (fiso← rs _) (fiso← rs _) (cong (fun← rs) eq) bi-∨ : {n m n1 m1 : Level } {A : Set n} {B : Set m} {C : Set n1} {D : Set m1} → (ab : Bijection A B) → (cd : Bijection C D ) → Bijection (A ∨ C) (B ∨ D) bi-∨ {_} {_} {_} {_} {A} {B} {C} {D} ab cd = record { fun→ = fun→1 ; fun← = fun←1 ; fiso→ = fiso→1 ; fiso← = fiso←1 } where fun→1 : (A ∨ C) → (B ∨ D) fun→1 (case1 a) = case1 (fun→ ab a) fun→1 (case2 c) = case2 (fun→ cd c) fun←1 : (B ∨ D) → (A ∨ C) fun←1 (case1 a) = case1 (fun← ab a) fun←1 (case2 c) = case2 (fun← cd c) fiso→1 : (x : B ∨ D) → fun→1 (fun←1 x) ≡ x fiso→1 (case1 a) = cong case1 (fiso→ ab a) fiso→1 (case2 c) = cong case2 (fiso→ cd c) fiso←1 : (x : A ∨ C) → fun←1 (fun→1 x) ≡ x fiso←1 (case1 a) = cong case1 (fiso← ab a) fiso←1 (case2 c) = cong case2 (fiso← cd c) open import Relation.Binary.Structures bijIsEquivalence : {n : Level } → IsEquivalence (Bijection {n} {n}) bijIsEquivalence = record { refl = λ {R} → bid R ; sym = λ {R} {S} → bi-sym R S ; trans = λ {R} {S} {T} → bi-trans R S T } -- ¬ A = A → ⊥ -- -- famous diagnostic function -- -- 1 1 0 1 0 ... -- 0 1 0 1 0 ... -- 1 0 0 1 0 ... -- 1 1 1 1 0 ... -- 0 0 1 0 1 ... diag diag : {S : Set } (b : Bijection ( S → Bool ) S) → S → Bool diag b n = not (fun← b n n) diagonal : { S : Set } → ¬ Bijection ( S → Bool ) S diagonal {S} b = diagn1 (fun→ b (λ n → diag b n) ) refl where diagn1 : (n : S ) → ¬ (fun→ b (λ n → diag b n) ≡ n ) diagn1 n dn = ¬t=f (diag b n ) ( begin not (diag b n) ≡⟨⟩ not (not (fun← b n n)) ≡⟨ cong (λ k → not (k n) ) (sym (fiso← b _)) ⟩ not (fun← b (fun→ b (diag b)) n) ≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩ not (fun← b n n) ≡⟨⟩ diag b n ∎ ) where open ≡-Reasoning b1 : (b : Bijection ( ℕ → Bool ) ℕ) → ℕ b1 b = fun→ b (diag b) b-iso : (b : Bijection ( ℕ → Bool ) ℕ) → fun← b (b1 b) ≡ (diag b) b-iso b = fiso← b _ -- -- ℕ <=> ℕ + 1 (infinite hotel) -- to1 : {n : Level} {R : Set n} → Bijection ℕ R → Bijection ℕ (⊤ ∨ R ) to1 {n} {R} b = record { fun← = to11 ; fun→ = to12 ; fiso← = to13 ; fiso→ = to14 } where to11 : ⊤ ∨ R → ℕ to11 (case1 tt) = 0 to11 (case2 x) = suc ( fun← b x ) to12 : ℕ → ⊤ ∨ R to12 zero = case1 tt to12 (suc n) = case2 ( fun→ b n) to13 : (x : ℕ) → to11 (to12 x) ≡ x to13 zero = refl to13 (suc x) = cong suc (fiso← b x) to14 : (x : ⊤ ∨ R) → to12 (to11 x) ≡ x to14 (case1 x) = refl to14 (case2 x) = cong case2 (fiso→ b x) open _∧_ record NN ( i : ℕ) (nxn→n : ℕ → ℕ → ℕ) : Set where field j k : ℕ k1 : nxn→n j k ≡ i nn-unique : {j0 k0 : ℕ } → nxn→n j0 k0 ≡ i → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ i≤0→i≡0 : {i : ℕ } → i ≤ 0 → i ≡ 0 i≤0→i≡0 {0} z≤n = refl ---- -- (0, 0) (0, 1) (0, 2) .... -- (1, 0) (1, 1) (1, 2) .... -- (2, 0) (2, 1) (2, 2) .... -- : : : -- : : : -- nxn : Bijection ℕ (ℕ ∧ ℕ) nxn = record { fun← = λ p → nxn→n (proj1 p) (proj2 p) ; fun→ = n→nxn ; fiso← = λ i → NN.k1 (nn i) ; fiso→ = λ x → nn-id (proj1 x) (proj2 x) } where nxn→n : ℕ → ℕ → ℕ nxn→n zero zero = zero nxn→n zero (suc j) = j + suc (nxn→n zero j) nxn→n (suc i) zero = suc i + suc (nxn→n i zero) nxn→n (suc i) (suc j) = suc i + suc j + suc (nxn→n i (suc j)) nn : ( i : ℕ) → NN i nxn→n n→nxn : ℕ → ℕ ∧ ℕ n→nxn n = ⟪ NN.j (nn n) , NN.k (nn n) ⟫ k0 : {i : ℕ } → n→nxn i ≡ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ k0 {i} = refl nxn→n0 : { j k : ℕ } → nxn→n j k ≡ 0 → ( j ≡ 0 ) ∧ ( k ≡ 0 ) nxn→n0 {zero} {zero} eq = ⟪ refl , refl ⟫ nxn→n0 {zero} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (subst (λ k → 0 < k) (+-comm _ k) (s≤s z≤n))) nxn→n0 {(suc j)} {zero} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nxn→n0 {(suc j)} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nid20 : (i : ℕ) → i + (nxn→n 0 i) ≡ nxn→n i 0 nid20 zero = refl -- suc (i + (i + suc (nxn→n 0 i))) ≡ suc (i + suc (nxn→n i 0)) nid20 (suc i) = begin suc (i + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (i + k)) (sym (+-assoc i 1 (nxn→n 0 i))) ⟩ suc (i + ((i + 1) + nxn→n 0 i)) ≡⟨ cong (λ k → suc (i + (k + nxn→n 0 i))) (+-comm i 1) ⟩ suc (i + suc (i + nxn→n 0 i)) ≡⟨ cong ( λ k → suc (i + suc k)) (nid20 i) ⟩ suc (i + suc (nxn→n i 0)) ∎ where open ≡-Reasoning nid4 : {i j : ℕ} → i + 1 + j ≡ i + suc j nid4 {zero} {j} = refl nid4 {suc i} {j} = cong suc (nid4 {i} {j} ) nid5 : {i j k : ℕ} → i + suc (suc j) + suc k ≡ i + suc j + suc (suc k ) nid5 {zero} {j} {k} = begin suc (suc j) + suc k ≡⟨ +-assoc 1 (suc j) _ ⟩ 1 + (suc j + suc k) ≡⟨ +-comm 1 _ ⟩ (suc j + suc k) + 1 ≡⟨ +-assoc (suc j) (suc k) _ ⟩ suc j + (suc k + 1) ≡⟨ cong (λ k → suc j + k ) (+-comm (suc k) 1) ⟩ suc j + suc (suc k) ∎ where open ≡-Reasoning nid5 {suc i} {j} {k} = cong suc (nid5 {i} {j} {k} ) -- increment in the same stage nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nid2 zero zero = refl nid2 zero (suc j) = refl nid2 (suc i) zero = begin suc (nxn→n (suc i) 1) ≡⟨ refl ⟩ suc (suc (i + 1 + suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (suc k)) nid4 ⟩ suc (suc (i + suc (suc (nxn→n i 1)))) ≡⟨ cong (λ k → suc (suc (i + suc (suc k)))) (nid3 i) ⟩ suc (suc (i + suc (suc (i + suc (nxn→n i 0))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) zero ∎ where open ≡-Reasoning nid3 : (i : ℕ) → nxn→n i 1 ≡ i + suc (nxn→n i 0) nid3 zero = refl nid3 (suc i) = begin suc (i + 1 + suc (nxn→n i 1)) ≡⟨ cong suc nid4 ⟩ suc (i + suc (suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (i + suc (suc k))) (nid3 i) ⟩ suc (i + suc (suc (i + suc (nxn→n i 0)))) ∎ nid2 (suc i) (suc j) = begin suc (nxn→n (suc i) (suc (suc j))) ≡⟨ refl ⟩ suc (suc (i + suc (suc j) + suc (nxn→n i (suc (suc j))))) ≡⟨ cong (λ k → suc (suc (i + suc (suc j) + k))) (nid2 i (suc j)) ⟩ suc (suc (i + suc (suc j) + suc (i + suc j + suc (nxn→n i (suc j))))) ≡⟨ cong ( λ k → suc (suc k)) nid5 ⟩ suc (suc (i + suc j + suc (suc (i + suc j + suc (nxn→n i (suc j)))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) (suc j) ∎ where open ≡-Reasoning -- increment the stage nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) nid00 zero = refl nid00 (suc i) = begin suc (suc (i + suc (nxn→n i 0))) ≡⟨ cong (λ k → suc (suc (i + k ))) (nid00 i) ⟩ suc (suc (i + (nxn→n 0 (suc i)))) ≡⟨ refl ⟩ suc (suc (i + (i + suc (nxn→n 0 i)))) ≡⟨ cong suc (sym ( +-assoc 1 i (i + suc (nxn→n 0 i)))) ⟩ suc ((1 + i) + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (k + (i + suc (nxn→n 0 i)))) (+-comm 1 i) ⟩ suc ((i + 1) + (i + suc (nxn→n 0 i))) ≡⟨ cong suc (+-assoc i 1 (i + suc (nxn→n 0 i))) ⟩ suc (i + suc (i + suc (nxn→n 0 i))) ∎ where open ≡-Reasoning ----- -- -- create the invariant NN for all n -- nn zero = record { j = 0 ; k = 0 ; k1 = refl ; nn-unique = λ {j0} {k0} eq → cong₂ (λ x y → ⟪ x , y ⟫) (sym (proj1 (nxn→n0 eq))) (sym (proj2 (nxn→n0 {j0} {k0} eq))) } nn (suc i) with NN.k (nn i) in eq ... | zero = record { k = suc (sum ) ; j = 0 ; k1 = nn02 ; nn-unique = nn04 } where --- --- increment the stage --- sum = NN.j (nn i) + NN.k (nn i) stage = minus i (NN.j (nn i)) j = NN.j (nn i) NNnn : NN.j (nn i) + NN.k (nn i) ≡ sum NNnn = sym refl nn02 : nxn→n 0 (suc sum) ≡ suc i nn02 = begin sum + suc (nxn→n 0 sum) ≡⟨ sym (+-assoc sum 1 (nxn→n 0 sum)) ⟩ (sum + 1) + nxn→n 0 sum ≡⟨ cong (λ k → k + nxn→n 0 sum ) (+-comm sum 1 )⟩ suc (sum + nxn→n 0 sum) ≡⟨ cong suc (nid20 sum ) ⟩ suc (nxn→n sum 0) ≡⟨ cong (λ k → suc (nxn→n k 0 )) (sym (NNnn )) ⟩ suc (nxn→n (NN.j (nn i) + (NN.k (nn i)) ) 0) ≡⟨ cong₂ (λ j k → suc (nxn→n (NN.j (nn i) + j) k )) eq (sym eq) ⟩ suc (nxn→n (NN.j (nn i) + 0 ) (NN.k (nn i))) ≡⟨ cong (λ k → suc ( nxn→n k (NN.k (nn i)))) (+-comm (NN.j (nn i)) 0) ⟩ suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩ suc i ∎ where open ≡-Reasoning nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (sum ) ⟫ ≡ ⟪ j0 , k0 ⟫ nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- nn07 : nxn→n k0 0 ≡ i nn07 = cong pred ( begin suc ( nxn→n k0 0 ) ≡⟨ nid00 k0 ⟩ nxn→n 0 (suc k0 ) ≡⟨ eq1 ⟩ suc i ∎ ) where open ≡-Reasoning nn08 : k0 ≡ sum nn08 = begin k0 ≡⟨ cong proj1 (sym (NN.nn-unique (nn i) nn07)) ⟩ NN.j (nn i) ≡⟨ +-comm 0 _ ⟩ NN.j (nn i) + 0 ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NNnn ⟩ sum ∎ where open ≡-Reasoning nn04 {suc j0} {k0} eq1 = ⊥-elim ( nat-≡< (cong proj2 (nn06 nn05)) (subst (λ k → k < suc k0) (sym eq) (s≤s z≤n))) where nn05 : nxn→n j0 (suc k0) ≡ i nn05 = begin nxn→n j0 (suc k0) ≡⟨ cong pred ( begin suc (nxn→n j0 (suc k0)) ≡⟨ nid2 j0 k0 ⟩ nxn→n (suc j0) k0 ≡⟨ eq1 ⟩ suc i ∎ ) ⟩ i ∎ where open ≡-Reasoning nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn06 = NN.nn-unique (nn i) ... | suc k = record { k = k ; j = suc (NN.j (nn i)) ; k1 = nn11 ; nn-unique = nn13 } where --- --- increment in a stage --- sum = NN.j (nn i) + NN.k (nn i) stage = minus i (NN.j (nn i)) j = NN.j (nn i) NNnn : NN.j (nn i) + NN.k (nn i) ≡ sum NNnn = sym refl nn10 : suc (NN.j (nn i)) + k ≡ sum nn10 = begin suc (NN.j (nn i)) + k ≡⟨ cong (λ x → x + k) (+-comm 1 _) ⟩ (NN.j (nn i) + 1) + k ≡⟨ +-assoc (NN.j (nn i)) 1 k ⟩ NN.j (nn i) + suc k ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NNnn ⟩ sum ∎ where open ≡-Reasoning nn11 : nxn→n (suc (NN.j (nn i))) k ≡ suc i -- nxn→n ( NN.j (nn i)) (NN.k (nn i) ≡ i nn11 = begin nxn→n (suc (NN.j (nn i))) k ≡⟨ sym (nid2 (NN.j (nn i)) k) ⟩ suc (nxn→n (NN.j (nn i)) (suc k)) ≡⟨ cong (λ k → suc (nxn→n (NN.j (nn i)) k)) (sym eq) ⟩ suc (nxn→n ( NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i)) ⟩ suc i ∎ where open ≡-Reasoning nn18 : zero < NN.k (nn i) nn18 = subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ NN.k (nn i) ∎ ) (s≤s z≤n ) where open ≡-Reasoning nn13 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ suc (NN.j (nn i)) , k ⟫ ≡ ⟪ j0 , k0 ⟫ nn13 {zero} {suc k0} eq1 = ⊥-elim ( nat-≡< (sym (cong proj2 nn17)) nn18 ) where -- (nxn→n zero (suc k0)) ≡ suc i nn16 : nxn→n k0 zero ≡ i nn16 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid00 k0 )) eq1 ) nn17 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ k0 , zero ⟫ nn17 = NN.nn-unique (nn i) nn16 nn13 {suc j0} {k0} eq1 = begin ⟪ suc (NN.j (nn i)) , pred (suc k) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫ ) (sym eq) ⟩ ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡⟨ nn15 ⟩ ⟪ j0 , suc k0 ⟫ ∎ ) ⟩ ⟪ suc j0 , k0 ⟫ ∎ where -- nxn→n (suc j0) k0 ≡ suc i open ≡-Reasoning nn14 : nxn→n j0 (suc k0) ≡ i nn14 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid2 j0 k0 )) eq1 ) nn15 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn15 = NN.nn-unique (nn i) nn14 nn-id : (j k : ℕ) → n→nxn (nxn→n j k) ≡ ⟪ j , k ⟫ nn-id j k = begin n→nxn (nxn→n j k) ≡⟨ refl ⟩ ⟪ NN.j (nn (nxn→n j k)) , NN.k (nn (nxn→n j k)) ⟫ ≡⟨ NN.nn-unique (nn (nxn→n j k)) refl ⟩ ⟪ j , k ⟫ ∎ where open ≡-Reasoning -- [] 0 -- 0 → 1 -- 1 → 2 -- 01 → 3 -- 11 → 4 -- ... -- -- binary invariant -- record LB (n : ℕ) (lton : List Bool → ℕ ) : Set where field nlist : List Bool isBin : lton nlist ≡ n isUnique : (x : List Bool) → lton x ≡ n → nlist ≡ x lb+1 : List Bool → List Bool lb+1 [] = false ∷ [] lb+1 (false ∷ t) = true ∷ t lb+1 (true ∷ t) = false ∷ lb+1 t lb-1 : List Bool → List Bool lb-1 [] = [] lb-1 (true ∷ t) = false ∷ t lb-1 (false ∷ t) with lb-1 t ... | [] = true ∷ [] ... | x ∷ t1 = true ∷ x ∷ t1 LBℕ : Bijection ℕ ( List Bool ) LBℕ = record { fun← = λ x → lton x ; fun→ = λ n → LB.nlist (lb n) ; fiso← = λ n → LB.isBin (lb n) ; fiso→ = λ x → LB.isUnique (lb (lton x)) x refl } where lton1 : List Bool → ℕ lton1 [] = 1 lton1 (true ∷ t) = suc (lton1 t + lton1 t) lton1 (false ∷ t) = lton1 t + lton1 t lton : List Bool → ℕ lton x = pred (lton1 x) lton1>0 : (x : List Bool ) → 0 < lton1 x lton1>0 [] = a<sa lton1>0 (true ∷ x₁) = 0<s lton1>0 (false ∷ t) = ≤-trans (lton1>0 t) x≤x+y 2lton1>0 : (t : List Bool ) → 0 < lton1 t + lton1 t 2lton1>0 t = ≤-trans (lton1>0 t) x≤x+y lb=3 : {x y : ℕ} → 0 < x → 0 < y → 1 ≤ pred (x + y) lb=3 {suc x} {suc y} (s≤s 0<x) (s≤s 0<y) = subst (λ k → 1 ≤ k ) (+-comm (suc y) _ ) (s≤s z≤n) lton-cons>0 : {x : Bool} {y : List Bool } → 0 < lton (x ∷ y) lton-cons>0 {true} {[]} = refl-≤s lton-cons>0 {true} {x ∷ y} = ≤-trans ( lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y))) px≤x lton-cons>0 {false} {[]} = refl-≤ lton-cons>0 {false} {x ∷ y} = lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y)) lb=0 : {x y : ℕ } → pred x < pred y → suc (x + x ∸ 1) < suc (y + y ∸ 1) lb=0 {0} {suc y} lt = s≤s (subst (λ k → 0 < k ) (+-comm (suc y) y ) 0<s) lb=0 {suc x} {suc y} lt = begin suc (suc ((suc x + suc x) ∸ 1)) ≡⟨ refl ⟩ suc (suc x) + suc x ≡⟨ refl ⟩ suc (suc x + suc x) ≤⟨ <-plus (s≤s lt) ⟩ suc y + suc x <⟨ <-plus-0 {suc x} {suc y} {suc y} (s≤s lt) ⟩ suc y + suc y ≡⟨ refl ⟩ suc ((suc y + suc y) ∸ 1) ∎ where open ≤-Reasoning lb=2 : {x y : ℕ } → pred x < pred y → suc (x + x ) < suc (y + y ) lb=2 {zero} {suc y} lt = s≤s 0<s lb=2 {suc x} {suc y} lt = s≤s (lb=0 {suc x} {suc y} lt) lb=1 : {x y : List Bool} {z : Bool} → lton (z ∷ x) ≡ lton (z ∷ y) → lton x ≡ lton y lb=1 {x} {y} {true} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=2 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=2 {lton1 y} {lton1 x} c)) lb=1 {x} {y} {false} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=0 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=0 {lton1 y} {lton1 x} c)) --- --- lton is unique in a head --- lb-tf : {x y : List Bool } → ¬ (lton (true ∷ x) ≡ lton (false ∷ y)) lb-tf {x} {y} eq with <-cmp (lton1 x) (lton1 y) ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (lb=01 a)) where lb=01 : {x y : ℕ } → x < y → x + x < (y + y ∸ 1) lb=01 {x} {y} x<y = begin suc (x + x) ≡⟨ refl ⟩ suc x + x ≤⟨ ≤-plus x<y ⟩ y + x ≡⟨ refl ⟩ pred (suc y + x) ≡⟨ cong (λ k → pred ( k + x)) (+-comm 1 y) ⟩ pred ((y + 1) + x ) ≡⟨ cong pred (+-assoc y 1 x) ⟩ pred (y + suc x) ≤⟨ px≤py (≤-plus-0 {suc x} {y} {y} x<y) ⟩ (y + y) ∸ 1 ∎ where open ≤-Reasoning ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (lb=02 c) ) where lb=02 : {x y : ℕ } → x < y → x + x ∸ 1 < y + y lb=02 {0} {y} lt = ≤-trans lt x≤x+y lb=02 {suc x} {y} lt = begin suc ( suc x + suc x ∸ 1 ) ≡⟨ refl ⟩ suc x + suc x ≤⟨ ≤-plus {suc x} (<to≤ lt) ⟩ y + suc x ≤⟨ ≤-plus-0 (<to≤ lt) ⟩ y + y ∎ where open ≤-Reasoning ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (sym eq) ( begin suc (lton1 y + lton1 y ∸ 1) ≡⟨ sucprd ( 2lton1>0 y) ⟩ lton1 y + lton1 y ≡⟨ cong (λ k → k + k ) (sym b) ⟩ lton1 x + lton1 x ∎ )) where open ≤-Reasoning --- --- lton injection --- lb=b : (x y : List Bool) → lton x ≡ lton y → x ≡ y lb=b [] [] eq = refl lb=b [] (x ∷ y) eq = ⊥-elim ( nat-≡< eq (lton-cons>0 {x} {y} )) lb=b (x ∷ y) [] eq = ⊥-elim ( nat-≡< (sym eq) (lton-cons>0 {x} {y} )) lb=b (true ∷ x) (false ∷ y) eq = ⊥-elim ( lb-tf {x} {y} eq ) lb=b (false ∷ x) (true ∷ y) eq = ⊥-elim ( lb-tf {y} {x} (sym eq) ) lb=b (true ∷ x) (true ∷ y) eq = cong (λ k → true ∷ k ) (lb=b x y (lb=1 {x} {y} {true} eq)) lb=b (false ∷ x) (false ∷ y) eq = cong (λ k → false ∷ k ) (lb=b x y (lb=1 {x} {y} {false} eq)) lb : (n : ℕ) → LB n lton lb zero = record { nlist = [] ; isBin = refl ; isUnique = lb05 } where lb05 : (x : List Bool) → lton x ≡ zero → [] ≡ x lb05 x eq = lb=b [] x (sym eq) lb (suc n) with LB.nlist (lb n) in eq ... | [] = record { nlist = false ∷ [] ; isUnique = lb06 ; isBin = lb10 } where open ≡-Reasoning lb10 : lton1 (false ∷ []) ∸ 1 ≡ suc n lb10 = begin lton (false ∷ []) ≡⟨ refl ⟩ suc 0 ≡⟨ refl ⟩ suc (lton []) ≡⟨ cong (λ k → suc (lton k)) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n) ) ⟩ suc n ∎ lb06 : (x : List Bool) → pred (lton1 x ) ≡ suc n → false ∷ [] ≡ x lb06 x eq1 = lb=b (false ∷ []) x (trans lb10 (sym eq1)) -- lton (false ∷ []) ≡ lton x ... | false ∷ t = record { nlist = true ∷ t ; isBin = lb01 ; isUnique = lb09 } where lb01 : lton (true ∷ t) ≡ suc n lb01 = begin lton (true ∷ t) ≡⟨ refl ⟩ lton1 t + lton1 t ≡⟨ sym ( sucprd (2lton1>0 t) ) ⟩ suc (pred (lton1 t + lton1 t )) ≡⟨ refl ⟩ suc (lton (false ∷ t)) ≡⟨ cong (λ k → suc (lton k )) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n)) ⟩ suc n ∎ where open ≡-Reasoning lb09 : (x : List Bool) → lton1 x ∸ 1 ≡ suc n → true ∷ t ≡ x lb09 x eq1 = lb=b (true ∷ t) x (trans lb01 (sym eq1) ) -- lton (true ∷ t) ≡ lton x ... | true ∷ t = record { nlist = lb+1 (true ∷ t) ; isBin = lb02 (true ∷ t) lb03 ; isUnique = lb07 } where lb03 : lton (true ∷ t) ≡ n lb03 = begin lton (true ∷ t) ≡⟨ cong (λ k → lton k ) (sym eq ) ⟩ lton (LB.nlist (lb n)) ≡⟨ LB.isBin (lb n) ⟩ n ∎ where open ≡-Reasoning add11 : (x1 : ℕ ) → suc x1 + suc x1 ≡ suc (suc (x1 + x1)) add11 zero = refl add11 (suc x) = cong (λ k → suc (suc k)) (trans (+-comm x _) (cong suc (+-comm _ x))) lb04 : (t : List Bool) → suc (lton1 t) ≡ lton1 (lb+1 t) lb04 [] = refl lb04 (false ∷ t) = refl lb04 (true ∷ []) = refl lb04 (true ∷ t0 @ (_ ∷ _)) = begin suc (suc (lton1 t0 + lton1 t0)) ≡⟨ sym (add11 (lton1 t0)) ⟩ suc (lton1 t0) + suc (lton1 t0) ≡⟨ cong (λ k → k + k ) (lb04 t0 ) ⟩ lton1 (lb+1 t0) + lton1 (lb+1 t0) ∎ where open ≡-Reasoning lb02 : (t : List Bool) → lton t ≡ n → lton (lb+1 t) ≡ suc n lb02 [] refl = refl lb02 (t @ (_ ∷ _)) eq1 = begin lton (lb+1 t) ≡⟨ refl ⟩ pred (lton1 (lb+1 t)) ≡⟨ cong pred (sym (lb04 t)) ⟩ pred (suc (lton1 t)) ≡⟨ sym (sucprd (lton1>0 t)) ⟩ suc (pred (lton1 t)) ≡⟨ refl ⟩ suc (lton t) ≡⟨ cong suc eq1 ⟩ suc n ∎ where open ≡-Reasoning lb07 : (x : List Bool) → pred (lton1 x ) ≡ suc n → lb+1 (true ∷ t) ≡ x lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1)) -- Bernstein is non constructive, so we cannot use this without some assumption -- but in case of ℕ, we can construct it directly. open import Data.List hiding ([_]) open import Data.List.Relation.Unary.Any record InjectiveF (A B : Set) : Set where field f : A → B inject : {x y : A} → f x ≡ f y → x ≡ y record Is (A C : Set) (f : A → C) (c : C) : Set where field a : A fa=c : f a ≡ c record IsImage0 (A B : Set ) (f : (x : A ) → B) (x : B ) : Set where field y : A x=fy : x ≡ f y IsImage : (a b : Set) (iab : InjectiveF a b ) (x : b ) → Set IsImage a b iab x = IsImage0 a b (InjectiveF.f iab) x -- Bernstein : (A B : Set) -- → (fi : InjectiveF A B ) → (gi : InjectiveF B A ) -- → (is-A : (b : B ) → Dec (Is A B (InjectiveF.f fi) b) ) -- → (is-B : (a : A ) → Dec (Is B A (InjectiveF.f gi) a) ) -- → Bijection A B -- Bernstein A B fi gi isa isb = ? where -- open InjectiveF -- gfi : InjectiveF A A -- gfi = record { f = λ x → f gi (f fi x) ; inject = λ {x} {y} eq → inject fi (inject gi eq) } -- data gfImage : (x : A) → Set where -- a-g : {x : A} → (¬ib : ¬ ( IsImage B A gi x )) → gfImage x -- next-gf : {x : A} → (ix : IsImage A A gfi x) → (gfiy : gfImage (IsImage0.y ix) ) → gfImage x -- data ¬gfImage : (x : A) → Set where -- ngf : {x : A} → (¬gfiy : ¬ gfImage x) → ¬gfImage x -- gf02 : {x : A} → IsImage B A gi x ∨ (¬ IsImage B A gi x) ∨ ((ix : IsImage A A gfi x) → ¬ gfImage (IsImage0.y ix) ) → ¬ gfImage x -- gf02 {x} c gf = ? -- gfi∨ : (x : A) → gfImage x ∨ ¬gfImage x -- gfi∨ x with isb x -- ... | no ¬ib = case1 ( a-g (λ ib → ¬ib (record { a = IsImage0.y ib ; fa=c = sym (IsImage0.x=fy ib) }))) -- ... | yes ib with isa (f fi x) -- ... | no ¬ia = case2 ( ngf ? ) -- ... | yes ia = case1 ( next-gf record { y = f gi (Is.a ib) ; x=fy = br00 } (a-g br01 ) ) where -- br00 : x ≡ f gi (f fi (f gi (Is.a ib))) -- br00 = ? -- br01 : ¬ IsImage B A gi (f gi (Is.a ib)) -- br01 record { y = y ; x=fy = x=fy } = ? Countable-Bernstein : (A B C : Set) → Bijection A ℕ → Bijection C ℕ → (fi : InjectiveF A B ) → (gi : InjectiveF B C ) → (is-A : (c : C ) → Dec (Is A C (λ x → (InjectiveF.f gi (InjectiveF.f fi x))) c )) → (is-B : (c : C ) → Dec (Is B C (InjectiveF.f gi) c) ) → Bijection B ℕ Countable-Bernstein A B C an cn fi gi is-A is-B = record { fun→ = λ x → bton x ; fun← = λ n → ntob n ; fiso→ = biso ; fiso← = biso1 } where -- -- an f g cn -- ℕ ↔ A → B → C ↔ ℕ -- B = Image A f ∪ (B \ Image A f ) -- open Bijection f = InjectiveF.f fi g = InjectiveF.f gi -- -- count number of valid A and B in C -- the count of B is the numner of B in Bijection B ℕ -- if we have a , number a of A is larger than the numner of B C, so we have the inverse -- count-B : ℕ → ℕ count-B zero with is-B (fun← cn zero) ... | yes isb = 1 ... | no nisb = 0 count-B (suc n) with is-B (fun← cn (suc n)) ... | yes isb = suc (count-B n) ... | no nisb = count-B n count-A : ℕ → ℕ count-A zero with is-A (fun← cn zero) ... | yes isb = 1 ... | no nisb = 0 count-A (suc n) with is-A (fun← cn (suc n)) ... | yes isb = suc (count-A n) ... | no nisb = count-A n ¬isA∧isB : (y : C ) → Is A C (λ x → g ( f x)) y → ¬ Is B C g y → ⊥ ¬isA∧isB y isa nisb = ⊥-elim ( nisb record { a = f (Is.a isa) ; fa=c = lem } ) where lem : g (f (Is.a isa)) ≡ y lem = begin g (f (Is.a isa)) ≡⟨ Is.fa=c isa ⟩ y ∎ where open ≡-Reasoning ca≤cb0 : (n : ℕ) → count-A n ≤ count-B n ca≤cb0 zero with is-A (fun← cn zero) | is-B (fun← cn zero) ... | yes isA | yes isB = ≤-refl ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) ... | no nisA | yes isB = px≤x ... | no nisA | no nisB = ≤-refl ca≤cb0 (suc n) with is-A (fun← cn (suc n)) | is-B (fun← cn (suc n)) ... | yes isA | yes isB = s≤s (ca≤cb0 n) ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) ... | no nisA | yes isB = ≤-trans (ca≤cb0 n) px≤x ... | no nisA | no nisB = ca≤cb0 n -- (c n) is -- fun→ c, where c contains all "a" less than n -- (i n : ℕ) → i < suc n → fun→ cn (g (f (fun← an i))) < suc (c n) c : (n : ℕ) → ℕ c zero = fun→ cn (g (f (fun← an zero))) c (suc n) = max (fun→ cn (g (f (fun← an (suc n))))) (c n) c< : (i : ℕ) → fun→ cn (g (f (fun← an i))) ≤ c i c< zero = ≤-refl c< (suc i) = x≤max _ _ c-mono1 : (i : ℕ) → c i ≤ c (suc i) c-mono1 i = y≤max _ _ c-mono : (i j : ℕ ) → i ≤ j → c i ≤ c j c-mono i j i≤j with ≤-∨ i≤j ... | case1 refl = ≤-refl c-mono zero (suc j) z≤n | case2 lt = ≤-trans (c-mono zero j z≤n ) (c-mono1 j) c-mono (suc i) (suc j) (s≤s i≤j) | case2 (s≤s lt) = ≤-trans (c-mono (suc i) j lt ) (c-mono1 j) inject-cgf : {i j : ℕ} → fun→ cn (g (f (fun← an i))) ≡ fun→ cn (g (f (fun← an j))) → i ≡ j inject-cgf {i} {j} eq = bi-inject← an (InjectiveF.inject fi (InjectiveF.inject gi ( bi-inject→ cn eq ))) ani : (i : ℕ) → ℕ ani i = fun→ cn (g (f (fun← an i))) ncfi = λ n → (fun→ cn (g (f (fun← an n) ))) cfi = λ n → (g (f (fun← an n) )) clist : (n : ℕ) → List C clist 0 = fun← cn 0 ∷ [] clist (suc n) = fun← cn (suc n) ∷ clist n clist-more : {i j : ℕ} → i ≤ j → {c : C} → Any (_≡_ c) (clist i) → Any (_≡_ c) (clist j) clist-more {zero} {zero} z≤n a = a clist-more {zero} {suc n} i≤n a = there (clist-more {zero} {n} z≤n a) clist-more {suc i} {suc n} (s≤s le) {c} (there a) = there (clist-more {i} {n} le a) clist-more {suc i} {suc n} (s≤s le) {c} (here px) with ≤-∨ le ... | case1 refl = here px ... | case2 lt = there (clist-more {suc i} {n} lt {c} (here px) ) clist-any : (n i : ℕ) → i ≤ n → Any (_≡_ (g (f (fun← an i)))) (clist (c n)) clist-any n i i≤n = clist-more (c-mono _ _ i≤n) (lem00 (c i) (c< i)) where lem00 : (j : ℕ ) → fun→ cn (g (f (fun← an i))) ≤ j → Any (_≡_ (g (f (fun← an i)))) (clist j) lem00 0 f≤j with ≤-∨ f≤j ... | case1 eq = here ( trans (sym (fiso← cn _)) ( cong (fun← cn) eq )) ... | case2 le = ⊥-elim (nat-≤> z≤n le ) lem00 (suc j) f≤j with ≤-∨ f≤j ... | case1 eq = here ( trans (sym (fiso← cn _)) ( cong (fun← cn) eq )) ... | case2 (s≤s le) = there (lem00 j le) ca-list : List C → ℕ ca-list [] = 0 ca-list (h ∷ t) with is-A h ... | yes _ = suc (ca-list t) ... | no _ = ca-list t ca-list=count-A : (n : ℕ) → ca-list (clist n) ≡ count-A n ca-list=count-A n = lem02 n (clist n) refl where lem02 : (n : ℕ) → (cl : List C) → cl ≡ clist n → ca-list cl ≡ count-A n lem02 zero [] () lem02 zero (h ∷ t) refl with is-A (fun← cn zero) ... | yes _ = refl ... | no _ = refl lem02 (suc n) (h ∷ t) refl with is-A (fun← cn (suc n)) ... | yes _ = cong suc (lem02 n t refl) ... | no _ = lem02 n t refl -- remove (ani i) from clist (c n) -- a-list : (i : ℕ) → (cl : List C) → Any (_≡_ (g (f (fun← an i)))) cl → List C a-list i (_ ∷ t) (here px) = t a-list i (h ∷ t) (there a) = h ∷ ( a-list i t a ) -- count of a in a-list is one step reduced -- a-list-ca : (i : ℕ) → (cl : List C) → (a : Any (_≡_ (g (f (fun← an i)))) cl ) → suc (ca-list (a-list i cl a)) ≡ ca-list cl a-list-ca i cl a = lem03 i cl _ a refl where lem03 : (i : ℕ) → (cl cal : List C) → (a : Any (_≡_ (g (f (fun← an i)))) cl ) → cal ≡ (a-list i cl a) → suc (ca-list cal) ≡ ca-list cl lem03 i (h ∷ t) (h1 ∷ t1) (here px) refl with is-A h ... | yes _ = refl ... | no nisa = ⊥-elim ( nisa record { a = _ ; fa=c = px } ) lem03 i (h ∷ t) (h ∷ t1) (there ah) refl with is-A h ... | yes y = cong suc (lem03 i t t1 ah refl) ... | no _ = lem03 i t t1 ah refl lem03 i (x ∷ []) [] (here px) refl with is-A x ... | yes y = refl ... | no nisa = ⊥-elim ( nisa record { a = _ ; fa=c = px } ) -- reduced list still have all ani j < i -- a-list-any : (i : ℕ) → (cl : List C) → (a : Any (_≡_ (g (f (fun← an i)))) cl ) → (j : ℕ) → j < i → Any (_≡_ (g (f (fun← an j)))) cl → Any (_≡_ (g (f (fun← an j)))) (a-list i cl a) a-list-any i cl a j j<i b = lem03 i cl _ a refl j j<i b where lem03 : (i : ℕ) → (cl cal : List C) → (a : Any (_≡_ (g (f (fun← an i)))) cl ) → cal ≡ (a-list i cl a) → (j : ℕ) → j < i → Any (_≡_ (g (f (fun← an j)))) cl → Any (_≡_ (g (f (fun← an j)))) cal lem03 i (h ∷ t) cal (here px) eq j j<i (here px₁) = ⊥-elim ( nat-≡< ( bi-inject← an (InjectiveF.inject fi (InjectiveF.inject gi (trans px₁ (sym px))))) j<i ) lem03 i (h ∷ t) cal (here px) eq j j<i (there b) = subst (λ k → Any (_≡_ (g (f (fun← an j)))) k) (sym eq) b lem03 i (h ∷ t) cal (there a) eq j j<i (here px) = subst (λ k → Any (_≡_ (g (f (fun← an j)))) k) (sym eq) (here px) lem03 i (h ∷ t) (h1 ∷ cal) (there a) refl j j<i (there b) = there (lem03 i t cal a refl j j<i b) any-cl : (i : ℕ) → (cl : List C) → Set any-cl i cl = (j : ℕ) → j ≤ i → Any (_≡_ (g (f (fun← an j)))) cl n<ca-list : (n : ℕ) → n < ca-list (clist (c n)) n<ca-list n = lem30 n (clist (c n)) ≤-refl (λ j le → clist-any n j le ) where -- -- we have ANY i on i ≤ n, so we can remove n element from clist (c n) -- induction on n is no good, because (ani (suc n)) may happen in clist (c n) -- so we cannot recurse on n<ca-list itself. -- del : (i : ℕ) → (cl : List C) → any-cl i cl → List C -- del 0 contains ani 0 del i cl a = a-list i cl (a i ≤-refl) del-any : (i : ℕ) → (cl : List C) → (a : any-cl (suc i) cl) → any-cl i (del (suc i) cl a ) del-any i cl a j le = lem41 cl (del (suc i) cl a ) (a (suc i) ≤-refl ) (a j (≤-trans le a≤sa) ) refl where lem41 : (cl dl : List C) → (ai : Any (_≡_ (g (f (fun← an (suc i))))) cl) → (aj : Any (_≡_ (g (f (fun← an j)))) cl) → dl ≡ a-list (suc i) cl ai → Any (_≡_ (g (f (fun← an j)))) dl lem41 (h ∷ t) y (here px) (here px₁) eq = ⊥-elim ( nat-≡< ( bi-inject← an (InjectiveF.inject fi (InjectiveF.inject gi (trans px₁ (sym px))))) (x≤y→x<sy le) ) lem41 (h ∷ t) y (here px) (there b0) eq = subst (λ k → Any (_≡_ (g (f (fun← an j)))) k) (sym eq) b0 lem41 (h ∷ t) y (there a0) (here px) refl = here px lem41 (h ∷ t) (x ∷ y) (there a0) (there b0) refl = there (lem41 t (a-list (suc i) t a0) a0 b0 refl) del-ca : (i : ℕ) → (cl : List C) → (a : any-cl i cl ) → suc (ca-list (del i cl a)) ≡ ca-list cl del-ca i cl a = a-list-ca i cl (a i ≤-refl) lem30 : (i : ℕ) → (cl : List C) → (i≤n : i ≤ n) → (a : any-cl i cl) → i < ca-list cl lem30 0 cl i≤n a = begin 1 ≤⟨ s≤s z≤n ⟩ suc (ca-list (del 0 cl a) ) ≡⟨ del-ca 0 cl a ⟩ ca-list cl ∎ where open ≤-Reasoning lem30 (suc i) cl i≤n a = begin suc (suc i) ≤⟨ s≤s (lem30 i _ (≤-trans a≤sa i≤n) (del-any i cl a) ) ⟩ suc (ca-list (del (suc i) cl a)) ≡⟨ del-ca (suc i) cl a ⟩ ca-list cl ∎ where open ≤-Reasoning record maxAC (n : ℕ) : Set where field ac : ℕ n<ca : n < count-A ac lem02 : (n : ℕ) → maxAC n lem02 n = record { ac = c n ; n<ca = subst (λ k → n < k) (ca-list=count-A (c n)) (n<ca-list n ) } -- -- countB record create ℕ → B and its injection -- record CountB (n : ℕ) : Set where field b : B cb : ℕ b=cn : fun← cn cb ≡ g b cb=n : count-B cb ≡ suc n cb-inject : (cb1 : ℕ) → Is B C g (fun← cn cb1) → count-B cb ≡ count-B cb1 → cb ≡ cb1 count-B-mono : {i j : ℕ} → i ≤ j → count-B i ≤ count-B j count-B-mono {i} {j} i≤j with ≤-∨ i≤j ... | case1 refl = ≤-refl ... | case2 i<j = lem00 _ _ i<j where lem00 : (i j : ℕ) → i < j → count-B i ≤ count-B j lem00 i (suc j) (s≤s i<j) = ≤-trans (count-B-mono i<j) (lem01 j) where lem01 : (j : ℕ) → count-B j ≤ count-B (suc j) lem01 zero with is-B (fun← cn (suc zero)) ... | yes isb = refl-≤s ... | no nisb = ≤-refl lem01 (suc n) with is-B (fun← cn (suc (suc n))) ... | yes isb = refl-≤s ... | no nisb = ≤-refl lem01 : (n i : ℕ) → suc n ≤ count-B i → CountB n lem01 n i le = lem09 i (count-B i) le refl where -- injection of count-B --- lem06 : (i j : ℕ ) → Is B C g (fun← cn i) → Is B C g (fun← cn j) → count-B i ≡ count-B j → i ≡ j lem06 i j bi bj eq = lem08 where lem20 : (i j : ℕ) → i < j → Is B C g (fun← cn i) → Is B C g (fun← cn j) → count-B j ≡ count-B i → ⊥ lem20 zero (suc j) i<j bi bj le with is-B (fun← cn 0) in eq1 | is-B (fun← cn (suc j)) in eq2 ... | no nisc | _ = ⊥-elim (nisc bi) ... | yes _ | no nisc = ⊥-elim (nisc bj) ... | yes _ | yes _ = ⊥-elim ( nat-≤> lem25 a<sa) where lem22 : 1 ≡ count-B 0 lem22 with is-B (fun← cn 0) in eq1 ... | yes _ = refl ... | no nisa = ⊥-elim ( nisa bi ) lem24 : count-B j ≡ 0 lem24 = cong pred le lem25 : 1 ≤ 0 lem25 = begin 1 ≡⟨ lem22 ⟩ count-B 0 ≤⟨ count-B-mono {0} {j} z≤n ⟩ count-B j ≡⟨ lem24 ⟩ 0 ∎ where open ≤-Reasoning lem20 (suc i) zero () bi bj le lem20 (suc i) (suc j) (s≤s i<j) bi bj le = ⊥-elim ( nat-≡< lem24 lem21 ) where -- -- i < suc i ≤ j -- cb i < suc (cb i) < cb (suc i) ≤ cb j -- suc (cb i) ≡ suc (cb j) → cb i ≡ cb j lem22 : suc (count-B i) ≡ count-B (suc i) lem22 with is-B (fun← cn (suc i)) in eq1 ... | yes _ = refl ... | no nisa = ⊥-elim ( nisa bi ) lem23 : suc (count-B j) ≡ count-B (suc j) lem23 with is-B (fun← cn (suc j)) in eq1 ... | yes _ = refl ... | no nisa = ⊥-elim ( nisa bj ) lem24 : count-B i ≡ count-B j lem24 with is-B (fun← cn (suc i)) in eq1 | is-B (fun← cn (suc j)) in eq2 ... | no nisc | _ = ⊥-elim (nisc bi) ... | yes _ | no nisc = ⊥-elim (nisc bj) ... | yes _ | yes _ = sym (cong pred le) lem21 : suc (count-B i) ≤ count-B j lem21 = begin suc (count-B i) ≡⟨ lem22 ⟩ count-B (suc i) ≤⟨ count-B-mono i<j ⟩ count-B j ∎ where open ≤-Reasoning lem08 : i ≡ j lem08 with <-cmp i j ... | tri< a ¬b ¬c = ⊥-elim ( lem20 i j a bi bj (sym eq) ) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c₁ = ⊥-elim ( lem20 j i c₁ bj bi eq ) lem07 : (n i : ℕ) → count-B i ≡ suc n → CountB n lem07 n 0 eq with is-B (fun← cn 0) ... | yes isb = lem13 where cb1 = count-B 0 lem14 : count-B 0 ≡ 1 lem14 with is-B (fun← cn 0) ... | yes _ = refl ... | no ne = ⊥-elim (ne isb) lem12 : (cb1 : ℕ) → Is B C g (fun← cn cb1) → 1 ≡ count-B cb1 → 0 ≡ cb1 lem12 cb1 iscb1 cbeq = lem06 0 cb1 isb iscb1 (trans lem14 cbeq) lem13 : CountB n lem13 = record { b = Is.a isb ; cb = 0 ; b=cn = sym (Is.fa=c isb) ; cb=n = trans lem14 eq ; cb-inject = λ cb1 iscb1 cb1eq → lem12 cb1 iscb1 (subst (λ k → k ≡ count-B cb1) lem14 cb1eq) } ... | no nisb = ⊥-elim ( nat-≡< eq (s≤s z≤n ) ) lem07 n (suc i) eq with is-B (fun← cn (suc i)) ... | yes isb = record { b = Is.a isb ; cb = suc i ; b=cn = sym (Is.fa=c isb) ; cb=n = trans lem14 eq ; cb-inject = λ cb1 iscb1 cb1eq → lem12 cb1 iscb1 (subst (λ k → k ≡ count-B cb1) lem14 cb1eq) } where cbs = count-B (suc i) lem14 : count-B (suc i) ≡ suc (count-B i) lem14 with is-B (fun← cn (suc i)) ... | yes _ = refl ... | no ne = ⊥-elim (ne isb) lem12 : (cb1 : ℕ) → Is B C g (fun← cn cb1) → suc (count-B i) ≡ count-B cb1 → suc i ≡ cb1 lem12 cb1 iscb1 cbeq = lem06 (suc i) cb1 isb iscb1 (trans lem14 cbeq) ... | no nisb = lem07 n i eq -- starting from 0, if count B i ≡ suc n, this is it lem09 : (i j : ℕ) → suc n ≤ j → j ≡ count-B i → CountB n lem09 0 (suc j) (s≤s le) eq with ≤-∨ (s≤s le) ... | case1 eq1 = lem07 n 0 (sym (trans eq1 eq )) ... | case2 (s≤s lt) with is-B (fun← cn 0) in eq1 ... | yes isb = ⊥-elim ( nat-≤> (≤-trans (s≤s lt) (refl-≤≡ eq) ) (s≤s (s≤s z≤n)) ) ... | no nisb = ⊥-elim (nat-≡< (sym eq) (s≤s z≤n)) lem09 (suc i) (suc j) (s≤s le) eq with ≤-∨ (s≤s le) ... | case1 eq1 = lem07 n (suc i) (sym (trans eq1 eq )) ... | case2 (s≤s lt) with is-B (fun← cn (suc i)) in eq1 ... | yes isb = lem09 i j lt (cong pred eq) ... | no nisb = lem09 i (suc j) (≤-trans lt a≤sa) eq bton : B → ℕ bton b = pred (count-B (fun→ cn (g b))) ntob : (n : ℕ) → B ntob n = CountB.b (lem01 n (maxAC.ac (lem02 n)) (≤-trans (maxAC.n<ca (lem02 n)) (ca≤cb0 (maxAC.ac (lem02 n))) )) biso : (n : ℕ) → bton (ntob n) ≡ n biso n = begin bton (ntob n) ≡⟨ refl ⟩ pred (count-B (fun→ cn (g (CountB.b CB)))) ≡⟨ sym ( cong (λ k → pred (count-B (fun→ cn k))) ( CountB.b=cn CB)) ⟩ pred (count-B (fun→ cn (fun← cn (CountB.cb CB)))) ≡⟨ cong (λ k → pred (count-B k)) (fiso→ cn _) ⟩ pred (count-B (CountB.cb CB)) ≡⟨ cong pred (CountB.cb=n CB) ⟩ pred (suc n) ≡⟨ refl ⟩ n ∎ where open ≡-Reasoning CB = lem01 n (maxAC.ac (lem02 n)) (≤-trans (maxAC.n<ca (lem02 n)) (ca≤cb0 (maxAC.ac (lem02 n))) ) -- -- uniqueness of ntob is proved by injection -- biso1 : (b : B) → ntob (bton b) ≡ b biso1 b with count-B (fun→ cn (g b)) in eq1 ... | zero = ⊥-elim ( nat-≡< (sym lem20) (lem21 _ refl) ) where lem20 : count-B (fun→ cn (InjectiveF.f gi b)) ≡ zero lem20 = eq1 lem21 : (i : ℕ) → i ≡ fun→ cn (InjectiveF.f gi b) → 0 < count-B i lem21 0 eq with is-B (fun← cn 0) in eq1 ... | yes isb = ≤-refl ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) (sym eq)) } ) lem21 (suc i) eq with is-B (fun← cn (suc i)) in eq1 ... | yes isb = s≤s z≤n ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) (sym eq)) } ) ... | suc n = begin CountB.b CB ≡⟨ InjectiveF.inject gi (bi-inject→ cn (begin fun→ cn (g (CountB.b CB)) ≡⟨ cong (fun→ cn) (sym (CountB.b=cn CB)) ⟩ fun→ cn (fun← cn (CountB.cb CB)) ≡⟨ fiso→ cn _ ⟩ CountB.cb CB ≡⟨ CountB.cb-inject CB _ record { a = b ; fa=c = sym (fiso← cn _) } (trans (CountB.cb=n CB) (sym eq1)) ⟩ fun→ cn (InjectiveF.f gi b) ∎ )) ⟩ b ∎ where open ≡-Reasoning CB = lem01 n (maxAC.ac (lem02 n)) (≤-trans (maxAC.n<ca (lem02 n)) (ca≤cb0 (maxAC.ac (lem02 n))) ) bi-∧ : {A B C D : Set} → Bijection A B → Bijection C D → Bijection (A ∧ C) (B ∧ D) bi-∧ {A} {B} {C} {D} ab cd = record { fun← = λ x → ⟪ fun← ab (proj1 x) , fun← cd (proj2 x) ⟫ ; fun→ = λ n → ⟪ fun→ ab (proj1 n) , fun→ cd (proj2 n) ⟫ ; fiso← = lem0 ; fiso→ = lem1 } where open Bijection lem0 : (x : A ∧ C) → ⟪ fun← ab (fun→ ab (proj1 x)) , fun← cd (fun→ cd (proj2 x)) ⟫ ≡ x lem0 ⟪ x , y ⟫ = cong₂ ⟪_,_⟫ (fiso← ab x) (fiso← cd y) lem1 : (x : B ∧ D) → ⟪ fun→ ab (fun← ab (proj1 x)) , fun→ cd (fun← cd (proj2 x)) ⟫ ≡ x lem1 ⟪ x , y ⟫ = cong₂ ⟪_,_⟫ (fiso→ ab x) (fiso→ cd y) LM1 : (A : Set ) → Bijection (List A ) ℕ → Bijection (List A ∧ List Bool) ℕ LM1 A Ln = bi-trans (List A ∧ List Bool) (ℕ ∧ ℕ) ℕ (bi-∧ Ln (bi-sym _ _ LBℕ) ) (bi-sym _ _ nxn) open import Data.List.Properties open import Data.Maybe.Properties --- ℕ ⊆ List A ⊆ List (Maybe A) ⊆ List A ∧ List Bool ⊆ ℕ LMℕ : (A : Set ) → Bijection (List A) ℕ → Bijection (List (Maybe A)) ℕ LMℕ A Ln = Countable-Bernstein (List A) (List (Maybe A)) (List A ∧ List Bool) Ln (LM1 A Ln) fi gi dec0 dec1 where f : List A → List (Maybe A) f [] = [] f (x ∷ t) = just x ∷ f t f-inject : {x y : List A} → f x ≡ f y → x ≡ y f-inject {[]} {[]} refl = refl f-inject {x ∷ xt} {y ∷ yt} eq = cong₂ (λ j k → j ∷ k ) (just-injective (∷-injectiveˡ eq)) (f-inject (∷-injectiveʳ eq) ) g : List (Maybe A) → List A ∧ List Bool g [] = ⟪ [] , [] ⟫ g (just h ∷ t) = ⟪ h ∷ proj1 (g t) , true ∷ proj2 (g t) ⟫ g (nothing ∷ t) = ⟪ proj1 (g t) , false ∷ proj2 (g t) ⟫ g⁻¹ : List A ∧ List Bool → List (Maybe A) g⁻¹ ⟪ [] , [] ⟫ = [] g⁻¹ ⟪ x ∷ xt , [] ⟫ = just x ∷ g⁻¹ ⟪ xt , [] ⟫ g⁻¹ ⟪ [] , true ∷ y ⟫ = [] g⁻¹ ⟪ x ∷ xt , true ∷ yt ⟫ = just x ∷ g⁻¹ ⟪ xt , yt ⟫ g⁻¹ ⟪ [] , false ∷ y ⟫ = nothing ∷ g⁻¹ ⟪ [] , y ⟫ g⁻¹ ⟪ x ∷ x₁ , false ∷ y ⟫ = nothing ∷ g⁻¹ ⟪ x ∷ x₁ , y ⟫ g-iso : {x : List (Maybe A)} → g⁻¹ (g x) ≡ x g-iso {[]} = refl g-iso {just x ∷ xt} = cong ( λ k → just x ∷ k) ( g-iso ) g-iso {nothing ∷ []} = refl g-iso {nothing ∷ just x ∷ xt} = cong (λ k → nothing ∷ k ) ( g-iso {_} ) g-iso {nothing ∷ nothing ∷ xt} with g-iso {nothing ∷ xt} ... | t = trans (lemma01 (proj1 (g xt)) (proj2 (g xt)) ) ( cong (λ k → nothing ∷ k ) t ) where lemma01 : (x : List A) (y : List Bool ) → g⁻¹ ⟪ x , false ∷ false ∷ y ⟫ ≡ nothing ∷ g⁻¹ ⟪ x , false ∷ y ⟫ lemma01 [] y = refl lemma01 (x ∷ x₁) y = refl g-inject : {x y : List (Maybe A)} → g x ≡ g y → x ≡ y g-inject {x} {y} eq = subst₂ (λ j k → j ≡ k ) g-iso g-iso (cong g⁻¹ eq ) fi : InjectiveF (List A) (List (Maybe A)) fi = record { f = f ; inject = f-inject } gi : InjectiveF (List (Maybe A)) (List A ∧ List Bool ) gi = record { f = g ; inject = g-inject } dec0 : (c : List A ∧ List Bool) → Dec (Is (List A) (List A ∧ List Bool) (λ x → g (f x)) c) dec0 ⟪ [] , [] ⟫ = yes record { a = [] ; fa=c = refl } dec0 ⟪ h ∷ t , [] ⟫ = no ( lem00 ) where lem00 : Is (List A) (List A ∧ List Bool) (λ x → g (f x)) ⟪ h ∷ t , [] ⟫ → ⊥ lem00 record { a = [] ; fa=c = () } lem00 record { a = (x ∷ a) ; fa=c = () } dec0 ⟪ [] , true ∷ bt ⟫ = no lem00 where lem00 : Is (List A) (List A ∧ List Bool) (λ x → g (f x)) ⟪ [] , true ∷ bt ⟫ → ⊥ lem00 record { a = [] ; fa=c = () } dec0 ⟪ [] , false ∷ bt ⟫ = no lem00 where lem00 : Is (List A) (List A ∧ List Bool) (λ x → g (f x)) ⟪ [] , false ∷ bt ⟫ → ⊥ lem00 record { a = [] ; fa=c = () } dec0 ⟪ h ∷ t , (true ∷ bt) ⟫ with dec0 ⟪ t , bt ⟫ ... | yes y = yes record { a = h ∷ Is.a y ; fa=c = cong₂ (λ j k → ⟪ h ∷ j , true ∷ k ⟫ ) (cong proj1 (Is.fa=c y)) (cong proj2 (Is.fa=c y)) } ... | no n = no lem00 where lem00 : ¬ Is (List A) (List A ∧ List Bool) (λ x → g (f x)) ⟪ h ∷ t , true ∷ bt ⟫ lem00 record { a = (x ∷ a) ; fa=c = refl } = ⊥-elim ( n record { a = a ; fa=c = refl } ) dec0 ⟪ (h ∷ t) , (false ∷ bt) ⟫ = no lem00 where lem00 : ¬ Is (List A) (List A ∧ List Bool) (λ x → g (f x)) ⟪ h ∷ t , false ∷ bt ⟫ lem00 record { a = [] ; fa=c = () } lem00 record { a = (x ∷ a) ; fa=c = () } dec1 : (c : List A ∧ List Bool) → Dec (Is (List (Maybe A)) (List A ∧ List Bool) g c) dec1 ⟪ [] , [] ⟫ = yes record { a = [] ; fa=c = refl } dec1 ⟪ h ∷ t , [] ⟫ = no lem00 where lem00 : ¬ Is (List (Maybe A)) (List A ∧ List Bool) g ⟪ h ∷ t , [] ⟫ lem00 record { a = (just x ∷ a) ; fa=c = () } lem00 record { a = (nothing ∷ a) ; fa=c = () } dec1 ⟪ [] , true ∷ bt ⟫ = no lem00 where lem00 : ¬ Is (List (Maybe A)) (List A ∧ List Bool) g ⟪ [] , true ∷ bt ⟫ lem00 record { a = (just x ∷ a) ; fa=c = () } lem00 record { a = (nothing ∷ a) ; fa=c = () } dec1 ⟪ [] , false ∷ bt ⟫ with dec1 ⟪ [] , bt ⟫ ... | yes record { a = a ; fa=c = fa=c } = yes record { a = nothing ∷ a ; fa=c = cong₂ (λ j k → ⟪ j , false ∷ k ⟫) (cong proj1 fa=c) (cong proj2 fa=c) } ... | no n = no lem00 where lem00 : ¬ Is (List (Maybe A)) (List A ∧ List Bool) g ⟪ [] , false ∷ bt ⟫ lem00 record { a = (nothing ∷ a) ; fa=c = eq } = n record { a = a ; fa=c = cong₂ (λ j k → ⟪ j , k ⟫) (cong proj1 eq) lem01 } where lem01 : proj2 (g a) ≡ bt lem01 with cong proj2 eq ... | refl = refl dec1 ⟪ h ∷ t , true ∷ bt ⟫ with dec1 ⟪ t , bt ⟫ ... | yes y = yes record { a = just h ∷ Is.a y ; fa=c = cong₂ (λ j k → ⟪ h ∷ j , true ∷ k ⟫ ) (cong proj1 (Is.fa=c y)) (cong proj2 (Is.fa=c y)) } ... | no n = no lem00 where lem00 : ¬ Is (List (Maybe A)) (List A ∧ List Bool) g ⟪ h ∷ t , true ∷ bt ⟫ lem00 record { a = (just x ∷ a) ; fa=c = refl } = n record { a = a ; fa=c = refl } dec1 ⟪ h ∷ t , false ∷ bt ⟫ with dec1 ⟪ h ∷ t , bt ⟫ ... | yes record { a = a ; fa=c = fa=c } = yes record { a = nothing ∷ a ; fa=c = cong₂ (λ j k → ⟪ j , false ∷ k ⟫) (cong proj1 fa=c) (cong proj2 fa=c) } ... | no n = no lem00 where lem00 : ¬ Is (List (Maybe A)) (List A ∧ List Bool) g ⟪ h ∷ t , false ∷ bt ⟫ lem00 record { a = (nothing ∷ a) ; fa=c = eq } = n record { a = a ; fa=c = cong₂ (λ j k → ⟪ j , k ⟫) (cong proj1 eq) lem01 } where lem01 : proj2 (g a) ≡ bt lem01 with cong proj2 eq ... | refl = refl -- we may need substraction -- -- bi-subtract : (A B : Set ) → Bijection (A ∨ B) ℕ → finiteSet B → Bijection A ℕ -- -- Maybeℕ : (A : Set ) → Bijection (Maybe A) ℕ → Bijection A ℕ -- -- ( Bool ∷ Bool ∷ [] ) ∷ ( Bool ∷ Bool ∷ [] ) ∷ ( Bool ∷ [] ) ∷ [] -- just true ∷ just true ∷ nothing ∷ just true ∷ just true ∷ nothing ∷ just true ∷ nothing ∷ [] -- -- LBBℕ : Bijection (List (List Bool)) ℕ -- -- Lℕ=ℕ : Bijection (List ℕ) ℕ --