Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/BAlgebra.agda @ 1132:9904b262c08f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 11 Jan 2023 17:26:07 +0900 |
parents | d122d0c1b094 |
children | fe0129c40745 |
line wrap: on
line source
open import Level open import Ordinals module BAlgebra {n : Level } (O : Ordinals {n}) where open import zf open import logic import OrdUtil import OD import ODUtil import ODC open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ ) open inOrdinal O open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open OD O open OD.OD open ODAxiom odAxiom open HOD open _∧_ open _∨_ open Bool --_∩_ : ( A B : HOD ) → HOD --A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; -- odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y)) } ∩-comm : { A B : HOD } → (A ∩ B) ≡ (B ∩ A) ∩-comm {A} {B} = ==→o≡ record { eq← = λ {x} lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq→ = λ {x} lt → ⟪ proj2 lt , proj1 lt ⟫ } _∪_ : ( A B : HOD ) → HOD A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ; odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where lemma : {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B) lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _) lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _) _\_ : ( A B : HOD ) → HOD A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) } ¬∅∋ : {x : HOD} → ¬ ( od∅ ∋ x ) ¬∅∋ {x} = ¬x<0 L\L=0 : { L : HOD } → L \ L ≡ od∅ L\L=0 {L} = ==→o≡ ( record { eq→ = lem0 ; eq← = lem1 } ) where lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx) lem1 : {x : Ordinal} → odef od∅ x → odef (L \ L) x lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) [a-b]∩b=0 : { A B : HOD } → (A \ B) ∩ B ≡ od∅ [a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) } U-F=∅→F⊆U : {F U : HOD} → ((x : Ordinal) → ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U U-F=∅→F⊆U {F} {U} not = gt02 where gt02 : { x : Ordinal } → odef F x → odef U x gt02 {x} fx with ODC.∋-p O U (* x) ... | yes y = subst (λ k → odef U k ) &iso y ... | no n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ ) ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B ) ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x lemma1 {x} record { owner = owner ; ao = abo ; ox = ox } with pair=∨ (subst₂ (λ j k → odef (j , k ) owner) (sym *iso) (sym *iso) abo ) ... | case1 a=o = case1 (subst (λ k → odef k x ) ( begin * owner ≡⟨ cong (*) (sym a=o) ⟩ * (& A) ≡⟨ *iso ⟩ A ∎ ) ox ) where open ≡-Reasoning ... | case2 b=o = case2 (subst (λ k → odef k x ) (trans (cong (*) (sym b=o)) *iso ) ox) lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) A ⟪ case1 refl , d→∋ A A∋x ⟫ ) lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) B ⟪ case2 refl , d→∋ B B∋x ⟫ ) ∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B ) ∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫ lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫ dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x lemma1 {x} lt with proj2 lt lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r ) dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫ lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫ lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x lemma2 {x} lt with proj1 lt | proj2 lt lemma2 {x} lt | case1 cp | _ = case1 cp lemma2 {x} lt | _ | case1 cp = case1 cp lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ record IsBooleanAlgebra ( L : Set n) ( b1 : L ) ( b0 : L ) ( -_ : L → L ) ( _+_ : L → L → L ) ( _x_ : L → L → L ) : Set (suc n) where field +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c +-sym : {a b : L } → a + b ≡ b + a -sym : {a b : L } → a x b ≡ b x a +-aab : {a b : L } → a + ( a x b ) ≡ a x-aab : {a b : L } → a x ( a + b ) ≡ a +-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c ) x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c ) a+0 : {a : L } → a + b0 ≡ a ax1 : {a : L } → a x b1 ≡ a a+-a1 : {a : L } → a + ( - a ) ≡ b1 ax-a0 : {a : L } → a x ( - a ) ≡ b0 record BooleanAlgebra ( L : Set n) : Set (suc n) where field b1 : L b0 : L -_ : L → L _+_ : L → L → L _x_ : L → L → L isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_