Mercurial > hg > Members > kono > Proof > ZF-in-agda
view OPair.agda @ 284:a8f9c8a27e8d
minimal from LEM
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 May 2020 09:19:32 +0900 |
parents | d9d3654baee1 |
children | 5544f4921a44 |
line wrap: on
line source
open import Level open import Ordinals module OPair {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom open _∧_ open _∨_ open Bool open _==_ <_,_> : (x y : OD) → OD < x , y > = (x , x ) , (x , y ) exg-pair : { x y : OD } → (x , y ) == ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where left : {z : Ordinal} → def (x , y) z → def (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t right : {z : Ordinal} → def (y , x) z → def (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t ord≡→≡ : { x y : OD } → od→ord x ≡ od→ord y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq ) od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq ) eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl prod-eq : { x x' y y' : OD } → < x , y > == < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where lemma0 : {x y z : OD } → ( x , x ) == ( z , y ) → x ≡ y lemma0 {x} {y} eq with trio< (od→ord x) (od→ord y) lemma0 {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) lemma0 {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) lemma0 {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) lemma0 {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b lemma0 {x} {y} eq | tri> ¬a ¬b c with eq← eq {od→ord y} (case2 refl) lemma0 {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) lemma0 {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) lemma2 : {x y z : OD } → ( x , x ) == ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (lemma0 lemma3 )) ( lemma0 eq ) where lemma3 : ( x , x ) == ( y , z ) lemma3 = ==-trans eq exg-pair lemma1 : {x y : OD } → ( x , x ) == ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) lemma4 : {x y z : OD } → ( x , y ) == ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) ... | refl = refl lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z lemmax : x ≡ x' lemmax with eq→ eq {od→ord (x , x)} (case1 refl) lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' ... | refl = lemma1 (ord→== s ) lemmay : y ≡ y' lemmay with lemmax ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → od→ord k ) eq1 )) data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' -- eq-pair refl refl = HE.refl pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y) = x π1 : { p : OD } → ZFProduct ∋ p → OD π1 lt = ord→od (pi1 lt ) pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y π2 : { p : OD } → ZFProduct ∋ p → OD π2 lt = ord→od (pi2 lt ) op-cons : { ox oy : Ordinal } → ZFProduct ∋ < ord→od ox , ord→od oy > op-cons {ox} {oy} = pair ox oy p-cons : ( x y : OD ) → ZFProduct ∋ < x , y > p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl ( let open ≡-Reasoning in begin od→ord < ord→od (od→ord x) , ord→od (od→ord y) > ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩ od→ord < x , y > ∎ ) op-iso : { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op op-iso (pair ox oy) = refl p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < π1 p , π2 p > ≡ x p-iso {x} p = ord≡→≡ (op-iso p) p-pi1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ x p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) p-pi2 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))