Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/ODC.agda @ 1159:adba530ce1f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Jan 2023 14:40:54 +0900 |
parents | e086a266c6b7 |
children | 45cd80181a29 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module ODC {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core import OrdUtil open import logic open import nat import OD import ODUtil open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open ODUtil O open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open HOD open _∧_ postulate -- mimimul and x∋minimal is an Axiom of choice minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD -- this should be ¬ (x =h= od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) -- minimality (proved by ε-induction with LEM) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) -- -- Axiom of choice in intutionistic logic implies the exclude middle -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog -- pred-od : ( p : Set n ) → HOD pred-od p = record { od = record { def = λ x → (x ≡ o∅) ∧ p } ; odmax = osuc o∅; <odmax = λ x → subst (λ k → k o< osuc o∅) (sym (proj1 x)) <-osuc } ppp : { p : Set n } { a : HOD } → pred-od p ∋ a → p ppp {p} {a} d = proj2 d p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice p∨¬p p with is-o∅ ( & (pred-od p )) p∨¬p p | yes eq = case2 (¬p eq) where ps = pred-od p eqo∅ : ps =h= od∅ → & ps ≡ o∅ eqo∅ eq = subst (λ k → & ps ≡ k) ord-od∅ ( cong (λ k → & k ) (==→o≡ eq)) lemma : ps =h= od∅ → p → ⊥ lemma eq p0 = ¬x<0 {& ps} (eq→ eq record { proj1 = eqo∅ eq ; proj2 = p0 } ) ¬p : (& ps ≡ o∅) → p → ⊥ ¬p eq = lemma ( subst₂ (λ j k → j =h= k ) *iso o∅≡od∅ ( o≡→== eq )) p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where ps = pred-od p eqo∅ : ps =h= od∅ → & ps ≡ o∅ eqo∅ eq = subst (λ k → & ps ≡ k) ord-od∅ ( cong (λ k → & k ) (==→o≡ eq)) lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-elim : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-elim {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) or-exclude : {A B : Set n} → A ∨ B → A ∨ ( (¬ A) ∧ B ) or-exclude {A} {B} ab with p∨¬p A or-exclude {A} {B} (case1 a) | case1 a0 = case1 a or-exclude {A} {B} (case1 a) | case2 ¬a = ⊥-elim ( ¬a a ) or-exclude {A} {B} (case2 b) | case1 a = case1 a or-exclude {A} {B} (case2 b) | case2 ¬a = case2 ⟪ ¬a , b ⟫ -- record By-contradiction (A : Set n) (B : A → Set n) : Set (suc n) where -- field -- a : A -- b : B a -- -- by-contradiction : {A : Set n} {B : A → Set n} → ¬ ( (a : A ) → ¬ B a ) → By-contradiction A B -- by-contradiction {A} {B} not with p∨¬p A -- ... | case2 ¬a = ⊥-elim (not (λ a → ⊥-elim (¬a a ))) -- ... | case1 a with p∨¬p (B a) -- ... | case1 b = record { a = a ; b = b } -- ... | case2 ¬b = ⊥-elim ( not ( λ a b → ⊥-elim ( ¬b ? ))) -- power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t tx = subst (λ k → odef A k ) &iso ( power→ A t PA∋t (subst (λ k → odef t k) (sym &iso) tx ) ) power-∩ : { A x y : HOD } → Power A ∋ x → Power A ∋ y → Power A ∋ ( x ∩ y ) power-∩ {A} {x} {y} ax ay = power← A (x ∩ y) p01 where p01 : {z : HOD} → (x ∩ y) ∋ z → A ∋ z p01 {z} xyz = power→ A x ax (proj1 xyz ) OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) OrdP x y with trio< x (& y) OrdP x y | tri< a ¬b ¬c = no ¬c OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c open import zfc HOD→ZFC : ZFC HOD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = choice-func ; choice = choice } where -- Axiom of choice ( is equivalent to the existence of minimal in our case ) -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] choice-func : (X : HOD ) → {x : HOD } → ¬ ( x =h= od∅ ) → ( X ∋ x ) → HOD choice-func X {x} not X∋x = minimal x not choice : (X : HOD ) → {A : HOD } → ( X∋A : X ∋ A ) → (not : ¬ ( A =h= od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimal A not