view src/generic-filter.agda @ 1255:afecaee48825

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 16 Mar 2023 17:46:36 +0900
parents abd86d493c61
children 0b7e4eb68afc
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
import Level
open import Ordinals
module generic-filter {n : Level.Level } (O : Ordinals {n})   where

import filter
open import zf
open import logic
-- open import partfunc {n} O
import OD

open import Relation.Nullary
open import Relation.Binary
open import Data.Empty
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
open import Data.Nat
import BAlgebra

open BAlgebra O

open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O


import ODC

open filter O

open _∧_
open _∨_
open Bool


open HOD

-------
--    the set of finite partial functions from ω to 2
--
--

open import Data.List hiding (filter)
open import Data.Maybe

open import ZProduct O

record CountableModel : Set (Level.suc (Level.suc n)) where
   field
       ctl-M : HOD
       ctl→ : ℕ → Ordinal
       ctl<M : (x : ℕ) → odef (ctl-M) (ctl→ x)
       ctl← : (x : Ordinal )→  odef (ctl-M ) x → ℕ
       ctl-iso→ : { x : Ordinal } → (lt : odef (ctl-M) x )  → ctl→ (ctl← x lt ) ≡ x
       TC : {x y : Ordinal} → odef ctl-M x → odef (* x) y → odef ctl-M y
       is-model : (x : HOD) → & x o< & ctl-M → ctl-M ∋ (x ∩ ctl-M)
       -- we have no otherway round
       -- ctl-iso← : { x : ℕ }  →  ctl← (ctl→ x ) (ctl<M x)  ≡ x
--
-- almmost universe
-- find-p contains ∃ x : Ordinal → x o< & M → ∀ r ∈ M → ∈ Ord x
--

-- we expect  P ∈ * ctl-M ∧ G  ⊆ L ⊆ Power P  , ¬ G ∈ * ctl-M,

open CountableModel

----
--   a(n) ∈ M
--   ∃ q ∈ L ⊆ Power P → q ∈ a(n) ∧ p(n) ⊆ q
--
PGHOD :  (i : ℕ) (L : HOD) (C : CountableModel ) → (p : Ordinal) → HOD
PGHOD i L C p = record { od = record { def = λ x  →
       odef L x ∧ odef (* (ctl→ C i)) x  ∧  ( (y : Ordinal ) → odef (* p) y →  odef (* x) y ) }
   ; odmax = odmax L  ; <odmax = λ {y} lt → <odmax L (proj1 lt) }

---
--   p(n+1) = if ({q | q ∈ a(n) ∧ p(n) ⊆ q)} != ∅ then q otherwise p(n)
--
find-p :  (L : HOD ) (C : CountableModel )  (i : ℕ) → (x : Ordinal) → Ordinal
find-p L C zero x = x
find-p L C (suc i) x with is-o∅ ( & ( PGHOD i L C (find-p L C i x)) )
... | yes y  = find-p L C i x
... | no not  = & (ODC.minimal O ( PGHOD i L C (find-p L C i x)) (λ eq → not (=od∅→≡o∅ eq)))  -- axiom of choice

---
-- G = { r ∈ L ⊆ Power P | ∃ n → r ⊆ p(n) }
--
record PDN  (L p : HOD ) (C : CountableModel )  (x : Ordinal) : Set n where
   field
       gr : ℕ
       pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p L C gr (& p))) y
       x∈PP  : odef L x

open PDN

---
-- G as a HOD
--
PDHOD :  (L p : HOD ) (C : CountableModel  ) → HOD
PDHOD L p C  = record { od = record { def = λ x →  PDN L p C x }
    ; odmax = odmax L ; <odmax = λ {y} lt → <odmax L {y} (PDN.x∈PP lt)  }

open PDN

----
--  Generic Filter on Power P for HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. ℕ → P → Set )
--
--  p 0 ≡ ∅
--  p (suc n) = if ∃ q ∈ M ∧ p n ⊆ q → q  (by axiom of choice) ( q =  * ( ctl→ n ) )
---             else p n

P∅ : {P : HOD} → odef (Power P) o∅
P∅ {P} =  subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅  o∅≡od∅) where
    lemma : (x : Ordinal ) → * x ≡ od∅ → odef (Power P) (& od∅)
    lemma x eq = power← P od∅  (λ {x} lt → ⊥-elim (¬x<0 lt ))
x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y
x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt

gf05 : {a b : HOD} {x : Ordinal } → (odef (a ∪ b) x ) → ¬ odef a x → ¬ odef b x → ⊥
gf05 {a} {b} {x} (case1 ax) nax nbx = nax ax
gf05 {a} {b} {x} (case2 bx) nax nbx = nbx bx

gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) )
gf02 {P} {a} {b} = ==→o≡  record { eq→ = gf03 ; eq← = gf04 } where
       gf03 : {x : Ordinal} → odef ((P \ a) ∩ (P \ b)) x → odef (P \ (a ∪ b)) x
       gf03 {x} ⟪ ⟪ Px , ¬ax ⟫ , ⟪ _ , ¬bx ⟫ ⟫ = ⟪ Px , (λ pab → gf05 {a} {b} {x} pab ¬ax ¬bx )   ⟫
       gf04 : {x : Ordinal} → odef (P \ (a ∪ b)) x → odef ((P \ a) ∩ (P \ b)) x
       gf04 {x} ⟪ Px , abx ⟫  = ⟪ ⟪ Px , (λ ax → abx (case1 ax) ) ⟫ , ⟪ Px  , (λ bx → abx (case2 bx) ) ⟫ ⟫

gf45 : {P a b : HOD } → (P \ a) ∪ (P \ b) ≡ ( P \ (a ∩ b) )
gf45 {P} {a} {b} = ==→o≡  record { eq→ = gf03 ; eq← = gf04 } where
       gf03 : {x : Ordinal} → odef ((P \ a) ∪ (P \ b)) x → odef (P \ (a ∩ b)) x
       gf03 {x} (case1 pa) = ⟪ proj1 pa , (λ ab → proj2 pa (proj1 ab) ) ⟫ 
       gf03 {x} (case2 pb) = ⟪ proj1 pb , (λ ab → proj2 pb (proj2 ab) ) ⟫ 
       gf04 : {x : Ordinal} → odef (P \ (a ∩ b)) x → odef ((P \ a) ∪ (P \ b)) x
       gf04 {x} ⟪ Px , nab ⟫ with ODC.p∨¬p O (odef b x)
       ... | case1 bx = case1 ⟪ Px , ( λ ax → nab ⟪ ax , bx ⟫ ) ⟫
       ... | case2 nbx = case2 ⟪ Px , ( λ bx → nbx bx ) ⟫

open import Data.Nat.Properties
open import nat

p-monotonic1 :  (L p : HOD ) (C : CountableModel  ) → {n : ℕ} → (* (find-p L C n (& p))) ⊆ (* (find-p L C (suc n) (& p)))
p-monotonic1 L p C {n} {x} with is-o∅ (& (PGHOD n L C (find-p L C n (& p))))
... | yes y =  refl-⊆ {* (find-p L C n (& p))}
... | no not = λ  lt →   proj2 (proj2 fmin∈PGHOD) _ lt   where
    fmin : HOD
    fmin = ODC.minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq))
    fmin∈PGHOD : PGHOD n L C (find-p L C n (& p)) ∋ fmin
    fmin∈PGHOD = ODC.x∋minimal O (PGHOD n L C (find-p L C n (& p))) (λ eq → not (=od∅→≡o∅ eq))

p-monotonic :  (L p : HOD ) (C : CountableModel  ) → {n m : ℕ} → n ≤ m → (* (find-p L C n (& p))) ⊆ (* (find-p L C m (& p)))
p-monotonic L p C {zero} {zero} n≤m = refl-⊆ {* (find-p L C zero (& p))}
p-monotonic L p C {zero} {suc m} z≤n lt = p-monotonic1 L p C {m} (p-monotonic L p C {zero} {m} z≤n lt )
p-monotonic L p C {suc n} {suc m} (s≤s n≤m) with <-cmp n m
... | tri< a ¬b ¬c = λ lt → p-monotonic1 L p C {m} (p-monotonic L p C {suc n} {m} a lt)
... | tri≈ ¬a refl ¬c = λ x → x
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c )

record Expansion  (L : HOD) {p : HOD } (dense : HOD) (Lp : L ∋ p) : Set (Level.suc n) where
   field
       expansion : HOD
       dense∋exp : dense ∋ expansion 
       p⊆exp : p ⊆ expansion 

record Dense  {L P : HOD } (LP : L ⊆ Power P)  : Set (Level.suc n) where
   field
       dense : HOD
       d⊆P :  dense ⊆ L
       has-expansion : {p : HOD} → (Lp : L ∋ p) → Expansion L dense Lp

record GenericFilter1 {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where
    field
       genf : Ideal {L} {P} LP
       generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Ideal.ideal genf ) ≡ od∅ )

P-GenericFilter1 : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0
      → (C : CountableModel ) → GenericFilter1 {L} {P} LP ( ctl-M C )
P-GenericFilter1 P L p0 L⊆PP Lp0 C = record {
      genf = record { ideal = PDHOD L p0 C ; i⊆L = x∈PP ; ideal1 = ideal1 ; ideal2 =  ? }
    ; generic = ?
   } where
       ideal1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → q ⊆ p → PDHOD L p0 C ∋ q
       ideal1 {p} {q} Lq record { gr = gr ; pn<gr = pn<gr ; x∈PP = x∈PP } q⊆p = 
                 record { gr = gr ; pn<gr = λ y qy → pn<gr y ? ; x∈PP = ? }  where
            gf00 : {y : Ordinal } →  odef (* (& q)) y → odef (* (& q)) y  
            gf00 {y} qy = subst (λ k → odef k y ) ? (q⊆p (subst (λ k → odef k y) ? qy ))

record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where
    field
       genf : Filter {L} {P} LP
    rgen : HOD
    rgen = Replace (Filter.filter genf) (λ x → P \ x )
    field
       generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ rgen ) ≡ od∅ )
       gideal1 : {p q : HOD} → rgen ∋ p → q ⊆ p  → L ∋ ( P \ q) → rgen ∋ q
       gideal2 : {p q : HOD} → (rgen ∋ p ) ∧ (rgen ∋ q) → rgen ∋ (p ∪ q)

P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0
      → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C )
P-GenericFilter P L p0 L⊆PP Lp0 C = record {
      genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x)  ; f⊆L =  gf01 ; filter1 = f1 ; filter2 = f2 }
    ; generic = λ D cd → subst (λ k → ¬ (Dense.dense D ∩ k) ≡ od∅ ) (sym gf00) (fdense D cd )
    ; gideal1 = gideal1
    ; gideal2 = gideal2
   } where
    GP =  Replace (PDHOD L p0 C) (λ x → P \ x)
    GPR = Replace GP (_\_ P) 
    f⊆PL :  PDHOD L p0 C ⊆ L
    f⊆PL lt = x∈PP lt
    gf01 : Replace (PDHOD L p0 C) (λ x → P \ x) ⊆ L
    gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ? -- ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) )
    gf141 : {xp xq : Ordinal } → (Pp : PDN L p0 C xp) (Pq : PDN L p0 C xq) →  (* xp ∪ * xq) ⊆ P
    gf141 Pp Pq {x} (case1 xpx) = L⊆PP (PDN.x∈PP Pp)  _ xpx
    gf141 Pp Pq {x} (case2 xqx) = L⊆PP (PDN.x∈PP Pq)  _ xqx
    gf121 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  p ∩ q  ≡ P \ * (& (* (Replaced.z gp) ∪ * (Replaced.z gq)))
    gf121 {p} {q} gp gq = begin
           p ∩ q  ≡⟨ cong₂ (λ j k → j ∩ k ) (sym *iso) (sym *iso)  ⟩
           (* (& p)) ∩ (* (& q))  ≡⟨ cong₂ (λ j k → ( * j ) ∩ ( * k)) (Replaced.x=ψz gp) (Replaced.x=ψz gq) ⟩
           * (& (P \ (* xp ))) ∩ (* (& (P \ (* xq ))))  ≡⟨ cong₂ (λ j k → j ∩ k ) *iso *iso  ⟩
           (P \ (* xp )) ∩ (P \ (* xq ))  ≡⟨ gf02 {P} {* xp} {* xq}  ⟩
           P \ ((* xp) ∪ (* xq))  ≡⟨ cong (λ k → P \ k) (sym *iso) ⟩
           P \ * (& (* xp ∪ * xq))  ∎ where
              open ≡-Reasoning
              xp = Replaced.z gp
              xq = Replaced.z gq
    gf131 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  P \ (p ∩ q) ≡ * (Replaced.z gp) ∪ * (Replaced.z gq)
    gf131 {p} {q} gp gq = trans (cong (λ k → P \ k) (gf121 gp gq))
      (trans ( L\Lx=x (subst (λ k → k ⊆ P) (sym *iso) (gf141 (Replaced.az gp) (Replaced.az gq))) ) *iso )

    f1 : {p q : HOD} → L ∋ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ p → p ⊆ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ q
    f1 {p} {q} L∋q record { z = z ; az = az ; x=ψz = x=ψz } p⊆q = record { z = _ 
       ; az = record { gr = gr az ;  pn<gr = f04 ; x∈PP = ? } ; x=ψz = f05 } where
       open ≡-Reasoning
       f04 : (y : Ordinal) → odef (* (& (P \ q))) y → odef (* (find-p L C (gr az ) (& p0))) y
       f04 y qy = PDN.pn<gr az  _ (subst (λ k → odef k y ) f06 (f03 qy ))  where
          f06 : * (& (P \ p)) ≡ * z
          f06 = begin
            * (& (P \ p)) ≡⟨ *iso ⟩
            P \ p ≡⟨ cong (λ k → P \ k) (sym *iso)  ⟩
            P \ (* (& p)) ≡⟨ cong (λ k → P \ k) (cong (*) x=ψz) ⟩
            P \ (* (& (P \ * z))) ≡⟨ cong ( λ k → P  \ k) *iso ⟩
            P \ (P \ * z) ≡⟨ L\Lx=x  (λ {x} lt → L⊆PP (x∈PP az) _ lt ) ⟩
            * z ∎ 
          f03 :  odef (* (& (P \ q))) y →  odef (* (& (P \ p))) y
          f03 pqy with subst (λ k → odef k y ) *iso pqy
          ... | ⟪ Py , nqy ⟫ = subst (λ k → odef k y ) (sym *iso) ⟪ Py , (λ py → nqy (p⊆q py) ) ⟫
       f05 : & q ≡ & (P \ * (& (P \ q)))
       f05 = cong (&) ( begin
          q ≡⟨ sym (L\Lx=x (λ {x} lt → L⊆PP L∋q _ (subst (λ k → odef k x) (sym *iso) lt) )) ⟩ 
          P \ (P \ q )  ≡⟨  cong ( λ k → P  \ k) (sym *iso) ⟩ 
          P \ * (& (P \ q)) ∎ )
    f2 : {p q : HOD} → GP ∋ p → GP ∋ q → L ∋ (p ∩ q) → GP ∋ (p ∩ q)
    f2 {p} {q} record { z = xp ; az = Pp ; x=ψz = peq }
               record { z = xq ; az = Pq ; x=ψz = qeq } L∋pq with <-cmp (gr Pp) (gr Pq)
    ... | tri< a ¬b ¬c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq) } where
          gp = record { z = xp ; az = Pp ; x=ψz = peq }
          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
          gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
          gf10 = record { gr = PDN.gr Pq ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ? } where
             gf16 : gr Pp ≤ gr Pq
             gf16 = <to≤ a
             gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pq) (& p0))) y
             gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
             ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y xpy )
             ... | case2 xqy = PDN.pn<gr Pq _ xqy
    ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∪ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = ? } ; x=ψz = gf23 } where
          gp = record { z = xp ; az = Pp ; x=ψz = peq }
          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
          gf22 : odef L (& (* xp ∪ * xq))
          gf22 = ?
          gf21 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
          gf21 y xpqy with subst (λ k → odef k y) *iso xpqy
          ... | case1 xpy = PDN.pn<gr Pp _ xpy
          ... | case2 xqy = subst (λ k → odef (* (find-p L C k (& p0))) y ) (sym eq) ( PDN.pn<gr Pq _ xqy )
          gf25 : odef L (& p)
          gf25 = subst (λ k → odef L k ) (sym peq) ? -- ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) ))
          gf27 : {x : Ordinal} → odef p x → odef (P \ * xp) x
          gf27 {x} px = subst (λ k → odef k x) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) peq)) px
          -- gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) )
          gf23 : & (p ∩ q) ≡ & (P \ * (& (* xp ∪ * xq)))
          gf23 = cong (&) (gf121 gp gq )
    ... | tri> ¬a ¬b c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq ) } where
          gp = record { z = xp ; az = Pp ; x=ψz = peq }
          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
          gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
          gf10 = record { gr = PDN.gr Pp ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ?  } where
             gf16 : gr Pq ≤ gr Pp
             gf16 = <to≤ c
             gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
             gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
             ... | case1 xpy = PDN.pn<gr Pp _ xpy
             ... | case2 xqy = p-monotonic L p0 C gf16 (PDN.pn<gr Pq y xqy )
    gf00 : Replace (Replace (PDHOD L p0 C) (λ x → P \ x)) (_\_ P) ≡ PDHOD L p0 C
    gf00 = ==→o≡ record { eq→ = gf20 ; eq← = gf22 } where
         gf20 : {x : Ordinal} → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x → PDN L p0 C x
         gf20 {x} record { z = z₁ ; az = record { z = z ; az = az ; x=ψz = x=ψz₁ } ; x=ψz = x=ψz } =
            subst (λ k → PDN L p0 C k ) (begin
              z ≡⟨ sym &iso ⟩
              & (* z) ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
              & (P \ ( P \ (* z) )) ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
              & (P \ (* ( & (P \ (* z )))))  ≡⟨ cong (λ k → & (P \ (* k))) (sym x=ψz₁)  ⟩
              & (P \ (* z₁))  ≡⟨  sym x=ψz  ⟩
              x ∎ ) az where
              open ≡-Reasoning
              gf21 : {x : Ordinal } → odef (* z) x → odef P x
              gf21 {x} lt = L⊆PP ( PDN.x∈PP az) _ lt
         gf22 : {x : Ordinal} → PDN L p0 C x → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x
         gf22 {x} pdx = record { z = _ ; az = record { z = _ ; az = pdx ; x=ψz = refl } ; x=ψz = ( begin
           x ≡⟨ sym &iso ⟩
           & (* x)  ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
           & (P \ (P \ * x))  ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
           & (P \ * (& (P \ * x)))  ∎ ) } where
              open ≡-Reasoning
              gf21 : {z : Ordinal } → odef (* x) z → odef P z
              gf21 {z} lt = L⊆PP ( PDN.x∈PP pdx ) z lt
    fdense : (D : Dense {L} {P} L⊆PP ) → (ctl-M C ) ∋ Dense.dense D  → ¬ (Dense.dense D ∩ (PDHOD L p0 C)) ≡ od∅
    fdense D MD eq0  = ⊥-elim (  ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where
       open Dense
       open Expansion
       fd09 : (i : ℕ ) → odef L (find-p L C i (& p0))
       fd09 zero = Lp0
       fd09 (suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
       ... | yes _ = fd09 i
       ... | no not = fd17 where
          fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
          fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
          fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
          fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
          fd17 = proj1 fd18 
       an : ℕ
       an = ctl← C (& (dense D)) MD  
       pn : Ordinal
       pn = find-p L C an (& p0)
       pn+1 : Ordinal
       pn+1 = find-p L C (suc an) (& p0)
       d=an : dense D ≡ * (ctl→ C an) 
       d=an = begin dense D ≡⟨ sym *iso ⟩
                * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
                * (ctl→ C an) ∎  where open ≡-Reasoning
       fd07 : odef (dense D) pn+1
       fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
       ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where
          L∋pn : L ∋ * (find-p L C an (& p0))
          L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an )
          exp = has-expansion D L∋pn
          L∋df : L ∋ ( expansion exp )
          L∋df = (d⊆P D) (dense∋exp exp)
          pn∋df : (* (ctl→ C an)) ∋ ( expansion exp)
          pn∋df = subst (λ k → odef k (& ( expansion exp))) d=an (dense∋exp exp )
          pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (expansion exp))) y
          pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (p⊆exp exp py)
          fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (expansion exp))
          fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫
          fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
          fd10 = ≡o∅→=od∅ y
       ... | no not = fd27 where
          fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
          fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
          fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
          fd27 :  odef (dense D) (& fd29)
          fd27 = subst (λ k → odef k (& fd29)) (sym d=an) (proj1 (proj2 fd28)) 
       fd03 : odef (PDHOD L p0 C) pn+1
       fd03 = record { gr = suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (suc an)} 
       fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)
       fd01 = ⟪ subst (λ k → odef (dense D)  k ) (sym &iso) fd07 , subst (λ k → odef  (PDHOD L p0 C) k) (sym &iso) fd03 ⟫  
    gpx→⊆P : {p : Ordinal } → odef GP p → (* p) ⊆ P
    gpx→⊆P {p} record { z = z ; az = az ; x=ψz = x=ψz } {x} px with subst (λ k → odef k x ) 
       (trans (cong (*) x=ψz) *iso) px
    ... | ⟪ Px , npz ⟫ = Px
    L∋gpr : {p : HOD } → GPR ∋ p → (L ∋ p) ∧ ( L ∋ (P \ p))
    L∋gpr {p} record { z = zp ; az = record { z = z ; az = az ; x=ψz = x=ψzp } ; x=ψz = x=ψz } 
      = ⟪ subst (λ k → odef L k) fd40 (PDN.x∈PP az) , ? ⟫ where
        fd41 : * z ⊆ P
        fd41 {x} lt = L⊆PP ( PDN.x∈PP az ) _ lt
        fd40 : z ≡ & p
        fd40 = begin
           z ≡⟨ sym &iso ⟩ 
           & (* z) ≡⟨ cong (&) (sym (L\Lx=x fd41 )) ⟩ 
           & (P \ ( P \ * z ) )  ≡⟨ cong (λ k →  & (P \ k)) (sym *iso) ⟩ 
           & (P \ * (& ( P \ * z )))  ≡⟨ cong (λ k → & (P \  * k )) (sym x=ψzp)  ⟩ 
           & (P \ * zp)  ≡⟨ sym x=ψz ⟩ 
           & p  ∎ where open ≡-Reasoning
    gpr→gp : {p : HOD} → GPR ∋ p → GP ∋ (P \ p ) 
    gpr→gp {p} record { z = zp ; az = azp ; x=ψz = x=ψzp } = gfp where
        open ≡-Reasoning
        gfp : GP ∋ (P \ p ) 
        gfp = subst (λ k → odef GP k) (begin
           zp ≡⟨ sym &iso ⟩
           & (* zp) ≡⟨ cong (&) (sym (L\Lx=x (gpx→⊆P azp) )) ⟩
           & (P \ (P \ (* zp) )) ≡⟨ cong (λ k → & ( P \ k)) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (sym x=ψzp)))  ⟩
           & (P \ p) ∎ ) azp
    gideal1 : {p q : HOD} → GPR ∋ p → q ⊆ p → L ∋  ( P \ q) → GPR ∋ q
    gideal1 {p} {q} record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } q⊆p Lpq 
      = record { z = _ ; az = gf30 ; x=ψz = cong (&) fd42 } where
        gp =  record { z = np ; az = record { z = z ; az = pdz ; x=ψz = x=ψznp } ; x=ψz = x=ψz } 
        open ≡-Reasoning
        fd41 : * z ⊆ P
        fd41 {x} lt = L⊆PP ( PDN.x∈PP pdz ) _ lt
        p=*z : p ≡ * z
        p=*z = trans (sym *iso) ( cong (*) (sym ( begin
           z ≡⟨ sym &iso ⟩ 
           & (* z) ≡⟨ cong (&) (sym (L\Lx=x fd41 )) ⟩ 
           & (P \ ( P \ * z ) )  ≡⟨ cong (λ k →  & (P \ k)) (sym *iso) ⟩ 
           & (P \ * (& ( P \ * z )))  ≡⟨ cong (λ k → & (P \  * k )) (sym x=ψznp)  ⟩ 
           & (P \ * np)  ≡⟨ sym x=ψz ⟩ 
           & p ∎ ))) 
        q⊆P : q ⊆ P
        q⊆P {x} lt = L⊆PP ( PDN.x∈PP pdz ) _ (subst (λ k → odef k x) p=*z (q⊆p lt))
        fd42 : q ≡  P \ * (& (P \ q))
        fd42 = trans (sym (L\Lx=x  q⊆P )) (cong (λ k → P \ k) (sym *iso) )
        gf32 : (P \ p) ⊆ (P \ q)
        gf32 = proj1 (\-⊆ {P} {q} {p} q⊆P ) q⊆p 
        gf30 : GP ∋ (P \ q )
        gf30 = f1 Lpq (gpr→gp gp) gf32
    gideal2 : {p q : HOD} → (GPR ∋ p) ∧ (GPR ∋ q) → Replace GP (_\_ P) ∋ (p ∪ q)
    gideal2 {p} {q} ⟪ gp , gq ⟫ 
       = record { z = _ ; az = gf31 ; x=ψz = cong (&) gf32  } where
        open ≡-Reasoning
        gf31 : GP ∋ ( (P \ p ) ∩ (P \ q ) )
        gf31 = f2 (gpr→gp gp) (gpr→gp gq) ? -- (CAP (proj2 (L∋gpr gp)) (proj2 (L∋gpr gq))  ) 
        gf33 : (p ∪ q) ⊆ P
        gf33 {x} (case1 px) = L⊆PP (proj1 (L∋gpr gp)) _ (subst (λ k → odef k x) (sym *iso) px )
        gf33 {x} (case2 qx) = L⊆PP (proj1 (L∋gpr gq)) _ (subst (λ k → odef k x) (sym *iso) qx )
        gf32 :  (p ∪ q) ≡ (P \ * (& ((P \ p) ∩ (P \ q))))
        gf32 = begin
          p ∪ q ≡⟨ sym ( L\Lx=x gf33 ) ⟩ 
          P \ (P \ (p ∪ q)) ≡⟨ cong (λ k → P \ k) (sym (gf02 {P} {p}{q} ) ) ⟩ 
          P \ ((P \ p) ∩ (P \ q)) ≡⟨ cong (λ k → P \ k) (sym *iso) ⟩ 
          P \ * (& ((P \ p) ∩ (P \ q))) ∎

open GenericFilter
open Filter

record NotCompatible  (L p : HOD ) (L∋a : L ∋ p ) : Set (Level.suc (Level.suc n)) where
   field
      q r : HOD
      Lq : L ∋ q
      Lr : L ∋ r
      p⊆q : p ⊆ q  
      p⊆r : p ⊆ r  
      ¬compat : (s : HOD) → L ∋ s → ¬ ( (q ⊆ s) ∧ (r ⊆ s) )

lemma232 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 )
      → (C : CountableModel ) 
      → ctl-M C ∋ L
      → ( {p : HOD} → (Lp : L ∋ p ) → NotCompatible L p Lp )
      →  ¬ ( ctl-M C ∋  rgen ( P-GenericFilter P L p0 LPP Lp0 C ))
lemma232 P L p0 LPP Lp0 C ML NC MF = ¬rgf∩D=0 record { eq→ = λ {x} rgf∩D → ⊥-elim( proj2 (proj1 rgf∩D) (proj2 rgf∩D)) 
        ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where
    PG = P-GenericFilter P L p0 LPP Lp0 C 
    GF =  genf PG
    rgf =  rgen PG
    M = ctl-M C
    D : HOD  
    D = L \ rgf
    M∋DM : M ∋ (D ∩ M )
    M∋DM = is-model C D ?
    M∋D : M ∋ D 
    M∋D = ?
    M∋G : M ∋ rgf
    M∋G = MF
    D⊆PP : D ⊆ Power P
    D⊆PP {x} ⟪ Lx , ngx ⟫  = LPP Lx 
    DD : Dense {L} {P} LPP
    DD = record { dense = D ; d⊆P = proj1 ; has-expansion = exp } where
        exp : {p : HOD} → (Lp : L ∋ p) → Expansion L D Lp
        exp {p} Lp = exp1 where
            q : HOD
            q = NotCompatible.q (NC Lp)
            r : HOD
            r = NotCompatible.r (NC Lp)
            Lq : L ∋ q
            Lq = NotCompatible.Lq (NC Lp)
            exp1 : Expansion L D Lp
            exp1  with ODC.p∨¬p O (rgf ∋ q)
            ... | case2 ngq = record { expansion = q  ; dense∋exp = ? ; p⊆exp = ? }  
            ... | case1 gq with ODC.p∨¬p O (rgf ∋ r)
            ... | case2 ngr = record { expansion = q  ; dense∋exp = ? ; p⊆exp = ? }  
            ... | case1 gr = ⊥-elim ( ll02 ⟪ ? , ? ⟫ ) where
                ll02 : ¬ ( (q ⊆ p) ∧ (r ⊆ p) )
                ll02 = NotCompatible.¬compat (NC Lp) p ? 
                ll05 : ¬ ( (q ⊆ (q ∪ r) ∧ (r ⊆ (q ∪ r)) ))
                ll05 = NotCompatible.¬compat (NC Lp )  (q ∪ r) ?
                ll03 : rgf ∋ p → rgf ∋ q → rgf ∋ (p ∪ q)
                ll03 rp rq = gideal2 PG ⟪ rp , rq ⟫ 
                ll04 : rgf ∋ p → q ⊆ p → rgf ∋ q
                ll04 rp q⊆p = gideal1 PG rp q⊆p ?
    ¬rgf∩D=0 : ¬ ( (D ∩ rgf ) =h= od∅ )
    ¬rgf∩D=0 eq =  generic PG DD M∋D (==→o≡ eq)

--
-- P-Generic Filter defines a countable model D ⊂ C from P
--

--
-- in D, we have V ≠ L
--

--
--   val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > }
--

record valR (x : HOD) {P L : HOD} {LP : L ⊆ Power P} (C : CountableModel ) (G : GenericFilter {L} {P} LP (ctl-M C) ) : Set (Level.suc n) where
   field
     valx : HOD

record valS (ox oy oG : Ordinal) : Set n where
   field
     op : Ordinal
     p∈G : odef (* oG) op
     is-val : odef (* ox) ( & < * oy , * op >  )

val : (x : HOD) {P L : HOD } {LP : L ⊆ Power P}
    →  (G : GenericFilter {L} {P} LP {!!} )
    →  HOD
val x G = TransFinite {λ x → HOD } ind (& x) where
  ind : (x : Ordinal) → ((y : Ordinal) → y o< x → HOD) → HOD
  ind x valy = record { od = record { def = λ y → valS x y (& (filter (genf G))) } ; odmax = {!!} ; <odmax = {!!} }