Mercurial > hg > Members > kono > Proof > ZF-in-agda
view generic-filter.agda @ 413:b00d58b3dc57
generic filter on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 Jul 2020 08:15:56 +0900 |
parents | 38eded55c72d |
children | 44a484f17f26 |
line wrap: on
line source
open import Level open import Ordinals module generic-filter {n : Level } (O : Ordinals {n}) where import filter open import zf open import logic open import partfunc {n} O import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import ODC open filter O open _∧_ open _∨_ open Bool open HOD ------- -- the set of finite partial functions from ω to 2 -- -- open import Data.List hiding (filter) open import Data.Maybe import OPair open OPair O open PFunc _f∩_ : (f g : PFunc (Lift n Nat) (Lift n Two) ) → PFunc (Lift n Nat) (Lift n Two) f f∩ g = record { dom = λ x → (dom f x ) ∧ (dom g x ) ∧ ((fr : dom f x ) → (gr : dom g x ) → pmap f x fr ≡ pmap g x gr) ; pmap = λ x p → pmap f x (proj1 p) ; meq = meq f } _↑_ : (Nat → Two) → Nat → PFunc (Lift n Nat) (Lift n Two) _↑_ f i = record { dom = λ x → Lift n (lower x ≤ i) ; pmap = λ x _ → lift (f (lower x)) ; meq = λ {x} {p} {q} → refl } record _f⊆_ (f g : PFunc (Lift n Nat) (Lift n Two) ) : Set (suc n) where field extend : {x : Nat} → (fr : dom f (lift x) ) → dom g (lift x ) feq : {x : Nat} → {fr : dom f (lift x) } → pmap f (lift x) fr ≡ pmap g (lift x) (extend fr) open _f⊆_ open import Data.Nat.Properties ODSuc : (y : HOD) → infinite ∋ y → HOD ODSuc y lt = Union (y , (y , y)) data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where hφ : Hω2 0 o∅ h0 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (od→ord (Union ((< nat→ω i , nat→ω 0 >) , ord→od x ))) h1 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (od→ord (Union ((< nat→ω i , nat→ω 1 >) , ord→od x ))) he : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) x record Hω2r (x : Ordinal) : Set n where field count : Nat hω2 : Hω2 count x open Hω2r HODω2 : HOD HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = next o∅ ; <odmax = odmax0 } where P : (i j : Nat) (x : Ordinal ) → HOD P i j x = ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) , ord→od x nat1 : (i : Nat) (x : Ordinal) → od→ord (nat→ω i) o< next x nat1 i x = next< nexto∅ ( <odmax infinite (ω∋nat→ω {i})) lemma1 : (i j : Nat) (x : Ordinal ) → osuc (od→ord (P i j x)) o< next x lemma1 i j x = osuc<nx (pair-<xy (pair-<xy (pair-<xy (nat1 i x) (nat1 i x) ) (pair-<xy (nat1 i x) (nat1 j x) ) ) (subst (λ k → k o< next x) (sym diso) x<nx )) lemma : (i j : Nat) (x : Ordinal ) → od→ord (Union (P i j x)) o< next x lemma i j x = next< (lemma1 i j x ) ho< odmax0 : {y : Ordinal} → Hω2r y → y o< next o∅ odmax0 {y} r with hω2 r ... | hφ = x<nx ... | h0 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 0 x) ... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma i 1 x) ... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx 3→Hω2 : List (Maybe Two) → HOD 3→Hω2 t = list→hod t 0 where list→hod : List (Maybe Two) → Nat → HOD list→hod [] _ = od∅ list→hod (just i0 ∷ t) i = Union (< nat→ω i , nat→ω 0 > , ( list→hod t (Suc i) )) list→hod (just i1 ∷ t) i = Union (< nat→ω i , nat→ω 1 > , ( list→hod t (Suc i) )) list→hod (nothing ∷ t) i = list→hod t (Suc i ) Hω2→3 : (x : HOD) → HODω2 ∋ x → List (Maybe Two) Hω2→3 x = lemma where lemma : { y : Ordinal } → Hω2r y → List (Maybe Two) lemma record { count = 0 ; hω2 = hφ } = [] lemma record { count = (Suc i) ; hω2 = (h0 hω3) } = just i0 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (h1 hω3) } = just i1 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (he hω3) } = nothing ∷ lemma record { count = i ; hω2 = hω3 } ω→2 : HOD ω→2 = Power infinite ω→2f : (x : HOD) → ω→2 ∋ x → Nat → Two ω→2f x lt n with ODC.∋-p O x (nat→ω n) ω→2f x lt n | yes p = i1 ω→2f x lt n | no ¬p = i0 fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n fω→2-sel f x = (infinite ∋ x) ∧ ( (lt : odef infinite (od→ord x) ) → f (ω→nat x lt) ≡ i1 ) fω→2 : (Nat → Two) → HOD fω→2 f = Select infinite (fω→2-sel f) open _==_ postulate f-extensionality : { n m : Level} → Relation.Binary.PropositionalEquality.Extensionality n m ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f ω2∋f f = power← infinite (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {infinite} )) lt)) ω→2f≡i1 : (X i : HOD) → (iω : infinite ∋ i) → (lt : ω→2 ∋ X ) → ω→2f X lt (ω→nat i iω) ≡ i1 → X ∋ i ω→2f≡i1 X i iω lt eq with ODC.∋-p O X (nat→ω (ω→nat i iω)) ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → X ∋ k ) (nat→ω-iso iω) p open _⊆_ -- someday ... postulate ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2∋f f) ≡ f ↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD ↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) )) record CountableOrdinal : Set (suc (suc n)) where field ctl→ : Nat → Ordinal ctl← : Ordinal → Nat ctl-iso→ : { x : Ordinal } → ctl→ (ctl← x ) ≡ x ctl-iso← : { x : Nat } → ctl← (ctl→ x ) ≡ x record CountableHOD : Set (suc (suc n)) where field mhod : HOD mtl→ : Nat → Ordinal mtl→∈P : (i : Nat) → odef mhod (mtl→ i) mtl← : (x : Ordinal) → odef mhod x → Nat mtl-iso→ : { x : Ordinal } → (lt : odef mhod x ) → mtl→ (mtl← x lt ) ≡ x mtl-iso← : { x : Nat } → mtl← (mtl→ x ) (mtl→∈P x) ≡ x open CountableOrdinal open CountableHOD ---- -- a(n) ∈ M -- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q -- PGHOD : (i : Nat) → (C : CountableOrdinal) → (P : HOD) → (p : Ordinal) → HOD PGHOD i C P p = record { od = record { def = λ x → odef P x ∧ odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } ; odmax = odmax P ; <odmax = λ {y} lt → <odmax P (proj1 lt) } --- -- p(n+1) = if PGHOD n qn otherwise p(n) -- next-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (p : Ordinal) → Ordinal next-p C P i p with ODC.decp O ( PGHOD i C P p =h= od∅ ) next-p C P i p | yes y = p next-p C P i p | no not = od→ord (ODC.minimal O (PGHOD i C P p ) not) --- -- ascendant search on p(n) -- find-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x : Ordinal) → Ordinal find-p C P Zero x = x find-p C P (Suc i) x = find-p C P i ( next-p C P i x ) --- -- G = { r ∈ Power P | ∃ n → r ⊆ p(n) } -- record PDN (C : CountableOrdinal) (P : HOD ) (x : Ordinal) : Set n where field gr : Nat pn<gr : (y : Ordinal) → odef (ord→od x) y → odef (ord→od (find-p C P gr o∅)) y px∈ω : odef (Power P) x open PDN --- -- G as a HOD -- PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD PDHOD C P = record { od = record { def = λ x → PDN C P x } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.px∈ω lt) } where open PDN ---- -- Generic Filter on Power P for HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. Nat → P → Set ) -- -- p 0 ≡ ∅ -- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q (axiom of choice) --- else p n P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P P-GenericFilter C P = record { genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} } where P∅ : {P : HOD} → odef (Power P) o∅ P∅ {P} = subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅ o∅≡od∅) where lemma : (x : Ordinal ) → ord→od x ≡ od∅ → odef (Power P) (od→ord od∅) lemma x eq = power← P od∅ (λ {x} lt → ⊥-elim (¬x<0 lt )) x<y→∋ : {x y : Ordinal} → odef (ord→od x) y → ord→od x ∋ ord→od y x<y→∋ {x} {y} lt = subst (λ k → odef (ord→od x) k ) (sym diso) lt find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (ord→od (find-p C P i x)) y → odef P y find-p-⊆P C P Zero x y Px Py = subst (λ k → odef P k ) diso ( incl (ODC.power→⊆ O P (ord→od x) (d→∋ (Power P) Px)) (x<y→∋ Py)) find-p-⊆P C P (Suc i) x y Px Py = find-p-⊆P C P i (next-p C P i x) y {!!} {!!} f⊆PL : PDHOD C P ⊆ Power P f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → find-p-⊆P C P (gr lt) o∅ (od→ord y) P∅ (pn<gr lt (od→ord y) (subst (λ k → odef k (od→ord y)) (sym oiso) y<x))) } open GenericFilter open Filter record Incompatible (P : HOD ) : Set (suc (suc n)) where field except : HOD → ( HOD ∧ HOD ) incompatible : { p : HOD } → Power P ∋ p → Power P ∋ proj1 (except p ) → Power P ∋ proj2 (except p ) → ( p ⊆ proj1 (except p) ) ∧ ( p ⊆ proj2 (except p) ) → ∀ ( r : HOD ) → Power P ∋ r → ¬ (( proj1 (except p) ⊆ r ) ∧ ( proj2 (except p) ⊆ r )) lemma725 : (M : CountableHOD ) (C : CountableOrdinal) (P : HOD ) → mhod M ∋ Power P → Incompatible P → ¬ ( mhod M ∋ filter ( genf ( P-GenericFilter C P ))) lemma725 = {!!} lemma725-1 : Incompatible HODω2 lemma725-1 = {!!} lemma726 : (C : CountableOrdinal) (P : HOD ) → Union ( filter ( genf ( P-GenericFilter C HODω2 ))) =h= ω→2 lemma726 = {!!} -- -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } --