Mercurial > hg > Members > kono > Proof > ZF-in-agda
view ODC.agda @ 277:d9d3654baee1
seperate choice from LEM
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 May 2020 09:38:21 +0900 |
parents | 6f10c47e4e7a |
children | 197e0b3d39dc |
line wrap: on
line source
open import Level open import Ordinals module ODC {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open import logic open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom postulate -- mimimul and x∋minimal is an Axiom of choice minimal : (x : OD ) → ¬ (x == od∅ )→ OD -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimal : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) -- minimality (may proved by ε-induction ) minimal-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) -- -- Axiom of choice in intutionistic logic implies the exclude middle -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog -- ppp : { p : Set n } { a : OD } → record { def = λ x → p } ∋ a → p ppp {p} {a} d = d p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice p∨¬p p with is-o∅ ( od→ord ( record { def = λ x → p } )) p∨¬p p | yes eq = case2 (¬p eq) where ps = record { def = λ x → p } lemma : ps == od∅ → p → ⊥ lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq p0 ) ¬p : (od→ord ps ≡ o∅) → p → ⊥ ¬p eq = lemma ( subst₂ (λ j k → j == k ) oiso o∅≡od∅ ( o≡→== eq )) p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where ps = record { def = λ x → p } eqo∅ : ps == od∅ → od→ord ps ≡ o∅ eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-eilm {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) OrdP : ( x : Ordinal ) ( y : OD ) → Dec ( Ord x ∋ y ) OrdP x y with trio< x (od→ord y) OrdP x y | tri< a ¬b ¬c = no ¬c OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c open import zfc OD→ZFC : ZFC OD→ZFC = record { ZFSet = OD ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (OD ) _∋_ _==_ od∅ Select isZFC = record { choice-func = choice-func ; choice = choice } where -- Axiom of choice ( is equivalent to the existence of minimal in our case ) -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] choice-func : (X : OD ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD choice-func X {x} not X∋x = minimal x not choice : (X : OD ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimal A not --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : OD) : Set (suc n) where field a-choice : OD is-in : X ∋ a-choice choice-func' : (X : OD ) → (p∨¬p : ( p : Set (suc n)) → p ∨ ( ¬ p )) → ¬ ( X == od∅ ) → choiced X choice-func' X p∨¬p not = have_to_find where ψ : ( ox : Ordinal ) → Set (suc n) ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ def X x )) ∨ choiced X lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite {ψ} induction ox where ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM ∋-p A x | case1 (lift t) = yes t ∋-p A x | case2 t = no (λ x → t (lift x )) ∀-imply-or : {A : Ordinal → Set n } {B : Set (suc n) } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p (Lift ( suc n ) ((x : Ordinal ) → A x)) -- LEM ∀-imply-or {A} {B} ∀AB | case1 (lift t) = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x (lift not ))) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( ord→od x) ... | yes p = case2 ( record { a-choice = ord→od x ; is-in = p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → def X y → ⊥) ∨ choiced X lemma1 y with ∋-p X (ord→od y) lemma1 y | yes y<X = case2 ( record { a-choice = ord→od y ; is-in = y<X } ) lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (subst (λ k → def X k ) (sym diso) y<X ) ) lemma : ((y : Ordinals.ord O) → (O Ordinals.o< y) x → def X y → ⊥) ∨ choiced X lemma = ∀-imply-or lemma1 have_to_find : choiced X have_to_find = dont-or (lemma-ord (od→ord X )) ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → x o< (od→ord X) → def X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) }