Mercurial > hg > Members > kono > Proof > ZF-in-agda
view cardinal.agda @ 234:e06b76e5b682
ac from LEM in abstract ordinal
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2019 22:21:10 +0900 |
parents | af60c40298a4 |
children | 846e0926bb89 |
line wrap: on
line source
open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool -- we have to work on Ordinal to keep OD Level n -- since we use p∨¬p which works only on Level n <_,_> : (x y : OD) → OD < x , y > = (x , x ) , (x , y ) record SetProduct ( A B : OD ) (x : Ordinal ) : Set n where field π1 : Ordinal π2 : Ordinal A∋π1 : def A π1 B∋π2 : def B π2 -- opair : x ≡ od→ord (Ord ( omax (omax π1 π1) (omax π1 π2) )) -- < π1 , π2 > open SetProduct ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no t _⊗_ : (A B : OD) → OD A ⊗ B = record { def = λ x → SetProduct A B x } -- A ⊗ B = record { def = λ x → (y z : Ordinal) → def A y ∧ def B z ∧ ( x ≡ od→ord (< ord→od y , ord→od z >) ) } -- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) Func : ( A B : OD ) → OD Func A B = record { def = λ x → def (Power (A ⊗ B)) x } -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) func←od : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal ) func←od {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where lemma1 = subst (λ k → def (Power (dom ⊗ cod)) k ) (sym {!!}) lt lemma : Ordinal → Ordinal lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) {!!} lt ) | ∋-p (ord→od f) (ord→od y) lemma y | p | no n = o∅ lemma y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) ... | t with decp ( x ≡ π1 t ) ... | yes _ = π2 t ... | no _ = o∅ func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) -- contra position of sup-o< -- postulate -- contra-position of mimimulity of supermum required in Cardinal sup-x : ( Ordinal → Ordinal ) → Ordinal sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : OD ) : Set n where field xmap : Ordinal ymap : Ordinal xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : def Y y ) → func←od {X} {Y} {xmap} xfunc ( func←od yfunc y ) ≡ y open Onto onto-restrict : {X Y Z : OD} → Onto X Y → ({x : OD} → _⊆_ Z Y {x}) → Onto X Z onto-restrict {X} {Y} {Z} onto Z⊆Y = record { xmap = xmap1 ; ymap = zmap ; xfunc = xfunc1 ; yfunc = zfunc ; onto-iso = onto-iso1 } where xmap1 : Ordinal xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} ) zmap : Ordinal zmap = {!!} xfunc1 : def (Func X Z) xmap1 xfunc1 = {!!} zfunc : def (Func Z X) zmap zfunc = {!!} onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func←od xfunc1 ( func←od zfunc z ) ≡ z onto-iso1 = {!!} record Cardinal (X : OD ) : Set n where field cardinal : Ordinal conto : Onto X (Ord cardinal) cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y) cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto X (Ord x) ) ) cardinal-p x with p∨¬p ( Onto X (Ord x) ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } S = sup-o (λ x → proj1 (cardinal-p x)) lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc S) → Onto X (Ord y))) → Lift (suc n) (x o< (osuc S) → Onto X (Ord x) ) lemma1 x prev with trio< x (osuc S) lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a lemma1 x prev | tri< a ¬b ¬c | case1 x=S = lift ( λ lt → {!!} ) lemma1 x prev | tri< a ¬b ¬c | case2 x<S = lift ( λ lt → lemma2 ) where lemma2 : Onto X (Ord x) lemma2 with prev {!!} {!!} ... | lift t = t {!!} lemma1 x prev | tri≈ ¬a b ¬c = lift ( λ lt → ⊥-elim ( o<¬≡ b lt )) lemma1 x prev | tri> ¬a ¬b c = lift ( λ lt → ⊥-elim ( o<> c lt )) onto : Onto X (Ord S) onto with TransFinite {λ x → Lift (suc n) ( x o< osuc S → Onto X (Ord x) ) } lemma1 S ... | lift t = t <-osuc cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y) cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto X (Ord y) ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.