Mercurial > hg > Members > kono > Proof > ZF-in-agda
view Todo @ 323:e228e96965f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 12:53:40 +0900 |
parents | ac872f6b8692 |
children | bca043423554 |
line wrap: on
line source
Tue Jul 23 11:02:50 JST 2019 define cardinals prove CH in OD→ZF define Ultra filter define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite