view src/zorn.agda @ 483:ed29002a02b6

zorn again
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 06 Apr 2022 14:22:18 +0900
parents ce4f3f180b8e
children 419a3f4d5d97
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Ordinals
module zorn {n : Level } (O : Ordinals {n})   where

open import zf
open import logic
-- open import partfunc {n} O
import OD 

open import Relation.Nullary 
open import Relation.Binary 
open import Data.Empty 
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
import BAlgbra 


open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O


import ODC


open _∧_
open _∨_
open Bool


open HOD

record Element (A : HOD) : Set (suc n) where
    field
       elm : HOD
       is-elm : A ∋ elm

open Element

TotalOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
TotalOrderSet A _<_ = Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y )  

PartialOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
PartialOrderSet A _<_ = (a b :  Element A)
     → (elm a < elm b → ((¬ elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a))

me : { A a : HOD } → A ∋ a → Element A
me {A} {a} lt = record { elm = a ; is-elm = lt }

record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
   field
      sup : HOD
      A∋maximal : A ∋ sup
      x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup )   -- B is Total

record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
   field
      maximal : HOD
      A∋maximal : A ∋ maximal
      ¬maximal<x : {x : HOD} → A ∋ x  → ¬ maximal < x       -- A is Partial, use negative

open _==_
open _⊆_

record ZChain ( A : HOD ) (y : Ordinal)  (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
   field
      fb : Ordinal → HOD
      A∋fb : (ox : Ordinal ) → ox o< y  → A ∋ fb ox
      monotonic : (ox oy : Ordinal ) → ox o< y → ox o< oy → fb ox < fb oy 

Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n }
    → o∅ o< & A 
    → PartialOrderSet A _<_
    → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B  _<_  ) -- SUP condition
    → Maximal A _<_ 
Zorn-lemma {A} {_<_} 0<A PO supP = zorn00 where
     someA : HOD
     someA = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
     isSomeA : A ∋ someA
     isSomeA =  ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
     HasMaximal : HOD
     HasMaximal = record { od = record { def = λ y → odef A y ∧ ((m : Ordinal) →  odef A m → ¬ (* y < * m))} ; odmax = & A ; <odmax = z08 } where
         z08 : {y : Ordinal} → (odef A y ∧ ((m : Ordinal) →  odef A m → ¬ (* y < * m)))  → y o< & A
         z08 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P)))
     no-maximal : HasMaximal =h= od∅ → (y : Ordinal) →  (odef A y ∧ ((m : Ordinal) →  odef A m → ¬ (* y < * m))) →  ⊥
     no-maximal nomx y P = ¬x<0 (eq→ nomx {y} ⟪ proj1 P , (λ m am → (proj2 P) m am ) ⟫ ) 
     Gtx : { x : HOD} → A ∋ x → HOD
     Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = z09 }  where
         z09 : {y : Ordinal} → (odef A y ∧ (x < (* y)))  → y o< & A
         z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P)))
     z01 : {a b : HOD} → A ∋ a → A ∋ b  → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
     z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me  A∋b) (me A∋a)) (sym a=b)) b<a
     z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!}
       -- proj1 (PO (me  A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me  A∋b) (me A∋a)) b=a ) b<a ) ⟫
     -- ZChain is not compatible with the SUP condition
     B :  (z : ZChain A (& A) _<_ ) → HOD
     B = {!!}
     ZChain→¬SUP :  (z : ZChain A (& A) _<_ ) →  ¬ (SUP A (B z) _<_ )
     ZChain→¬SUP z sp = ⊥-elim {!!} where
         z03 : & (SUP.sup sp) o< osuc (& A)
         z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc
         z02 :  (x : HOD) → B z ∋ x → SUP.sup sp < x → ⊥
         z02 x xe s<x = {!!} -- z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x 
     ind :  HasMaximal =h= od∅
         → (x : Ordinal) → ((y : Ordinal) → y o< x →  ZChain A y _<_ )
         →  ZChain A x _<_
     ind nomx x prev with Oprev-p x
     ... | yes op with ODC.∋-p O A (* x)
     ... | no ¬Ax = {!!} where
          -- we have previous ordinal and ¬ A ∋ x, use previous Zchain
          px = Oprev.oprev op
          zc1 : ZChain A px _<_
          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
          z04 :  {!!} -- (sup : HOD) (as : A ∋ sup) → & sup o< osuc x → sup < ZChain.fb zc1 as
          z04 sup as s<x with trio< (& sup) x
          ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) )  
          ... | tri< a ¬b ¬c  = {!!} -- ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o< k ) (sym (Oprev.oprev=x op)) a )
          ... | tri> ¬a ¬b c with  osuc-≡< s<x
          ... | case1 eq = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans eq (sym &iso)) as) )  
          ... | case2 lt = ⊥-elim (¬a lt )
     ... | yes ax = z06 where -- we have previous ordinal and A ∋ x
          px = Oprev.oprev op
          zc1 : ZChain A px _<_
          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
          z06 : ZChain A x _<_
          z06 with is-o∅ (& (Gtx ax))
          ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal
              x-is-maximal :  (m : Ordinal) → odef A m → ¬ (* x < * m)
              x-is-maximal m am  =  ¬x<m   where
                 ¬x<m :  ¬ (* x < * m)
                 ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫  (≡o∅→=od∅ nogt) 
          ... | no not = {!!} where
     ind nomx x prev | no ¬ox with trio< (& A) x   --- limit ordinal case
     ... | tri< a ¬b ¬c = {!!} where
          zc1 : ZChain A (& A) _<_
          zc1 = prev (& A) a 
     ... | tri≈ ¬a b ¬c = {!!} where
     ... | tri> ¬a ¬b c with ODC.∋-p O A (* x)
     ... | no ¬Ax = {!!} where
     ... | yes ax with is-o∅ (& (Gtx ax))
     ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal
              x-is-maximal :  (m : Ordinal) → odef A m → ¬ (* x < * m)
              x-is-maximal m am  =  ¬x<m   where
                 ¬x<m :  ¬ (* x < * m)
                 ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫  (≡o∅→=od∅ nogt) 
     ... | no not = {!!} where
     zorn00 : Maximal A _<_
     zorn00 with is-o∅ ( & HasMaximal )
     ... | no not = record { maximal = ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x  = zorn02 } where
         -- yes we have the maximal
         hasm :  odef HasMaximal ( & ( ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ) )
         hasm =  ODC.x∋minimal  O HasMaximal  (λ eq → not (=od∅→≡o∅ eq))
         zorn01 :  A ∋ ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq))
         zorn01 =  proj1 hasm
         zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x)
         zorn02 {x} ax m<x = ((proj2 hasm) (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x )
     ... | yes ¬Maximal = ⊥-elim {!!} where
         -- if we have no maximal, make ZChain, which contradict SUP condition
         z : (x : Ordinal) → HasMaximal =h= od∅  → ZChain A x _<_ 
         z x nomx = TransFinite (ind nomx) x

_⊆'_ : ( A B : HOD ) → Set n
_⊆'_ A B = (x : Ordinal ) → odef A x → odef B x

MaximumSubset : {L P : HOD} 
       → o∅ o< & L →  o∅ o< & P → P ⊆ L
       → PartialOrderSet P _⊆'_
       → ( (B : HOD) → B ⊆ P → TotalOrderSet B _⊆'_ → SUP P B _⊆'_ )
       → Maximal P (_⊆'_)
MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP  = Zorn-lemma {P} {_⊆'_} 0<P PO SP