module logic where open import Level open import Relation.Nullary open import Relation.Binary hiding (_⇔_ ) open import Data.Empty data Bool : Set where true : Bool false : Bool data Two : Set where i0 : Two i1 : Two record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where constructor ⟪_,_⟫ field proj1 : A proj2 : B data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where case1 : A → A ∨ B case2 : B → A ∨ B _⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) _⇔_ A B = ( A → B ) ∧ ( B → A ) ∧-exch : {n m : Level} {A : Set n} { B : Set m } → A ∧ B → B ∧ A ∧-exch p = ⟪ _∧_.proj2 p , _∧_.proj1 p ⟫ ∨-exch : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → B ∨ A ∨-exch (case1 x) = case2 x ∨-exch (case2 x) = case1 x contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A double-neg A notnot = notnot A double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A double-neg2 notnot A = notnot ( double-neg A ) de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) ) de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) de-morgan∨ : {n : Level } {A B : Set n} → A ∨ B → ¬ ( (¬ A ) ∧ (¬ B ) ) de-morgan∨ {n} {A} {B} (case1 a) and = ⊥-elim ( _∧_.proj1 and a ) de-morgan∨ {n} {A} {B} (case2 b) and = ⊥-elim ( _∧_.proj2 and b ) dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) dont-or {A} {B} (case2 b) ¬A = b dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) dont-orb {A} {B} (case1 a) ¬B = a infixr 130 _∧_ infixr 140 _∨_ infixr 150 _⇔_ _/\_ : Bool → Bool → Bool true /\ true = true _ /\ _ = false _\/_ : Bool → Bool → Bool false \/ false = false _ \/ _ = true not : Bool → Bool not true = false not false = true _<=>_ : Bool → Bool → Bool true <=> true = true false <=> false = true _ <=> _ = false open import Relation.Binary.PropositionalEquality not-not-bool : { b : Bool } → not (not b) ≡ b not-not-bool {true} = refl not-not-bool {false} = refl record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where field fun← : S → R fun→ : R → S fiso← : (x : R) → fun← ( fun→ x ) ≡ x fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) injection R S f = (x y : R) → f x ≡ f y → x ≡ y ¬t=f : (t : Bool ) → ¬ ( not t ≡ t) ¬t=f true () ¬t=f false () infixr 130 _\/_ infixr 140 _/\_ ≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B ≡-Bool-func {true} {true} a→b b→a = refl ≡-Bool-func {false} {true} a→b b→a with b→a refl ... | () ≡-Bool-func {true} {false} a→b b→a with a→b refl ... | () ≡-Bool-func {false} {false} a→b b→a = refl bool-≡-? : (a b : Bool) → Dec ( a ≡ b ) bool-≡-? true true = yes refl bool-≡-? true false = no (λ ()) bool-≡-? false true = no (λ ()) bool-≡-? false false = yes refl ¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false ¬-bool-t {true} ne = ⊥-elim ( ne refl ) ¬-bool-t {false} ne = refl ¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true ¬-bool-f {true} ne = refl ¬-bool-f {false} ne = ⊥-elim ( ne refl ) ¬-bool : {a : Bool} → a ≡ false → a ≡ true → ⊥ ¬-bool refl () lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥ lemma-∧-0 {true} {true} refl () lemma-∧-0 {true} {false} () lemma-∧-0 {false} {true} () lemma-∧-0 {false} {false} () lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥ lemma-∧-1 {true} {true} refl () lemma-∧-1 {true} {false} () lemma-∧-1 {false} {true} () lemma-∧-1 {false} {false} () bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true bool-and-tt refl refl = refl bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true bool-∧→tt-0 {true} {true} refl = refl bool-∧→tt-0 {false} {_} () bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true bool-∧→tt-1 {true} {true} refl = refl bool-∧→tt-1 {true} {false} () bool-∧→tt-1 {false} {false} () bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b bool-or-1 {false} {true} refl = refl bool-or-1 {false} {false} refl = refl bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a bool-or-2 {true} {false} refl = refl bool-or-2 {false} {false} refl = refl bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true bool-or-3 {true} = refl bool-or-3 {false} = refl bool-or-31 : {a b : Bool} → b ≡ true → ( a \/ b ) ≡ true bool-or-31 {true} {true} refl = refl bool-or-31 {false} {true} refl = refl bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true bool-or-4 {true} = refl bool-or-4 {false} = refl bool-or-41 : {a b : Bool} → a ≡ true → ( a \/ b ) ≡ true bool-or-41 {true} {b} refl = refl bool-and-1 : {a b : Bool} → a ≡ false → (a /\ b ) ≡ false bool-and-1 {false} {b} refl = refl bool-and-2 : {a b : Bool} → b ≡ false → (a /\ b ) ≡ false bool-and-2 {true} {false} refl = refl bool-and-2 {false} {false} refl = refl open import Data.Nat open import Data.Nat.Properties _≥b_ : ( x y : ℕ) → Bool x ≥b y with <-cmp x y ... | tri< a ¬b ¬c = false ... | tri≈ ¬a b ¬c = true ... | tri> ¬a ¬b c = true _>b_ : ( x y : ℕ) → Bool x >b y with <-cmp x y ... | tri< a ¬b ¬c = false ... | tri≈ ¬a b ¬c = false ... | tri> ¬a ¬b c = true _≤b_ : ( x y : ℕ) → Bool x ≤b y = y ≥b x _b x open import Relation.Binary.PropositionalEquality ¬i0≡i1 : ¬ ( i0 ≡ i1 ) ¬i0≡i1 () ¬i0→i1 : {x : Two} → ¬ (x ≡ i0 ) → x ≡ i1 ¬i0→i1 {i0} ne = ⊥-elim ( ne refl ) ¬i0→i1 {i1} ne = refl ¬i1→i0 : {x : Two} → ¬ (x ≡ i1 ) → x ≡ i0 ¬i1→i0 {i0} ne = refl ¬i1→i0 {i1} ne = ⊥-elim ( ne refl )