open import Level open import Ordinals module OrdUtil {n : Level} (O : Ordinals {n} ) where open import logic open import nat open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext o<-dom : { x y : Ordinal } → x o< y → Ordinal o<-dom {x} _ = x o<-cod : { x y : Ordinal } → x o< y → Ordinal o<-cod {_} {y} _ = y o<-subst : {Z X z x : Ordinal } → Z o< X → Z ≡ z → X ≡ x → z o< x o<-subst df refl refl = df o<¬≡ : { ox oy : Ordinal } → ox ≡ oy → ox o< oy → ⊥ o<¬≡ {ox} {oy} eq lt with trio< ox oy o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq o<> : {x y : Ordinal } → y o< x → x o< y → ⊥ o<> {ox} {oy} lt tl with trio< ox oy o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl o≤> : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ o≤> {x} {y} y {x} {y} y {x} {y} y x lt (proj1 P) b ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ob ¬a ¬b c = ⊥-elim ( ¬p ¬a ¬b c = ⊥-elim ( o<> c (subst₂ (λ j k → j o< k ) refl (Oprev.oprev=x op) <-osuc ) ) pxo≤x : {x : Ordinal} (op : Oprev Ordinal osuc x) → Oprev.oprev op o< osuc x pxo≤x {x} op = ordtrans (pxo ¬a ¬b c with osuc-≡< c osucc {ox} {oy} oy ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy ¬a ¬b c = ⊥-elim (o<> (osucc c) oy ¬a ¬b c = no ¬b _o≤_ : Ordinal → Ordinal → Set n a o≤ b = a o< osuc b -- (a ≡ b) ∨ ( a o< b ) o<→≤ : {a b : Ordinal} → a o< b → a o≤ b o<→≤ {a} {b} lt with trio< a (osuc b) ... | tri< a₁ ¬b ¬c = a₁ ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a (ordtrans lt <-osuc ) ) ... | tri> ¬a ¬b c = ⊥-elim (¬a (ordtrans lt <-osuc ) ) -- o<-irr : { x y : Ordinal } → { lt lt1 : x o< y } → lt ≡ lt1 xo ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) maxα : Ordinal → Ordinal → Ordinal maxα x y with trio< x y maxα x y | tri< a ¬b ¬c = y maxα x y | tri> ¬a ¬b c = x maxα x y | tri≈ ¬a refl ¬c = x omin : Ordinal → Ordinal → Ordinal omin x y with trio< x y omin x y | tri< a ¬b ¬c = x omin x y | tri> ¬a ¬b c = y omin x y | tri≈ ¬a refl ¬c = x min1 : {x y z : Ordinal } → z o< x → z o< y → z o< omin x y min1 {x} {y} {z} z ¬a ¬b c = z ¬a ¬b c = osuc x omax x y | tri≈ ¬a refl ¬c = osuc x omax< : ( x y : Ordinal ) → x o< y → osuc y ≡ omax x y omax< x y lt with trio< x y omax< x y lt | tri< a ¬b ¬c = refl omax< x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) omax< x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) omax≤ : ( x y : Ordinal ) → x o≤ y → osuc y ≡ omax x y omax≤ x y le with trio< x y omax≤ x y le | tri< a ¬b ¬c = refl omax≤ x y le | tri≈ ¬a refl ¬c = refl omax≤ x y le | tri> ¬a ¬b c with osuc-≡< le omax≤ x y le | tri> ¬a ¬b c | case1 eq = ⊥-elim (¬b eq) omax≤ x y le | tri> ¬a ¬b c | case2 x ¬a ¬b c = ⊥-elim (¬b eq ) omax-x : ( x y : Ordinal ) → x o< omax x y omax-x x y with trio< x y omax-x x y | tri< a ¬b ¬c = ordtrans a <-osuc omax-x x y | tri> ¬a ¬b c = <-osuc omax-x x y | tri≈ ¬a refl ¬c = <-osuc omax-y : ( x y : Ordinal ) → y o< omax x y omax-y x y with trio< x y omax-y x y | tri< a ¬b ¬c = <-osuc omax-y x y | tri> ¬a ¬b c = ordtrans c <-osuc omax-y x y | tri≈ ¬a refl ¬c = <-osuc omxx : ( x : Ordinal ) → omax x x ≡ osuc x omxx x with trio< x x omxx x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) omxx x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) omxx x | tri≈ ¬a refl ¬c = refl omxxx : ( x : Ordinal ) → omax x (omax x x ) ≡ osuc (osuc x) omxxx x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) open _∧_ o≤-refl0 : { i j : Ordinal } → i ≡ j → i o≤ j o≤-refl0 {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc o≤-refl : { i : Ordinal } → i o≤ i o≤-refl {i} = subst (λ k → i o< osuc k ) refl <-osuc o≤? : (x y : Ordinal) → Dec ( x o≤ y ) o≤? x y with trio< x y ... | tri< a ¬b ¬c = yes (ordtrans a <-osuc) ... | tri≈ ¬a b ¬c = yes (o≤-refl0 b) ... | tri> ¬a ¬b c = no (λ n → o≤> n c ) o¬≤→< : {x z : Ordinal} → ¬ (x o< osuc z) → z o< x o¬≤→< {x} {z} not with trio< z x ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim (not (o≤-refl0 (sym b))) ... | tri> ¬a ¬b c = ⊥-elim (not (o<→≤ c )) b≤px∨b=x : {b x : Ordinal } → (op : Oprev Ordinal osuc x ) → b o≤ x → (b o≤ (Oprev.oprev op) ) ∨ (b ≡ x ) b≤px∨b=x {b} {x} op b≤x with trio< b (Oprev.oprev op) ... | tri< a ¬b ¬c = case1 (o<→≤ a) ... | tri≈ ¬a b ¬c = case1 (o≤-refl0 b) ... | tri> ¬a ¬b px ¬a ¬b c = case2 (o<→≤ c) OrdTrans : Transitive _o≤_ OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a ¬a ¬b c = ⊥-elim ( ¬x<0 c ) next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z next< {x} {y} {z} x ¬a ¬b c = ⊥-elim (¬nx osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx ¬a ¬b c = -- x < y < next y < next x ⊥-elim ( ¬nx ¬a ¬b c with osuc-≡< x≤y ≤next {x} {y} x≤y | tri> ¬a ¬b c | case1 refl = o≤-refl -- x = y < next x ≤next {x} {y} x≤y | tri> ¬a ¬b c | case2 x ¬a ¬b c = o≤-refl0 (sym ( x ¬a ¬b c = subst (λ k → osuc x o< k ) nexto≡ (osuc ¬a ¬b c = osuc ¬a ¬b c = subst (λ k → x o< k ) nexto≡ xnx record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field os→ : (x : Ordinal) → x o< maxordinal → Ordinal os← : Ordinal → Ordinal os←limit : (x : Ordinal) → os← x o< maxordinal os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where -- open inOrdinal O resp-o< : _o<_ Respects₂ _≡_ resp-o< = resp₂ _o<_ trans1 : {i j k : Ordinal} → i o< j → j o< osuc k → i o< k trans1 {i} {j} {k} i