open import Level module ordinal-definable where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open OD open import Data.Unit open Ordinal postulate od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) _c<_ : { n : Level } → ( a x : OD {n} ) → Set n x c< a = a ∋ x record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : OD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } postulate c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n}) o∅→od∅ : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} o∅→od∅ {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) ∅1 {n} x (lift ()) ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} ∅3 {n} {x} = TransFinite {n} c1 c2 c3 x where c0 : Nat → Ordinal {n} → Set n c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} c1 : ∀ (lx : Nat ) → c0 lx (record { lv = Suc lx ; ord = ℵ lx } ) c1 lx not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case1 ≤-refl ) c1 lx not | t | () c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) c2 Zero not = refl c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case1 ≤-refl ) c2 (Suc lx) not | t | () c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case2 Φ< ) c3 lx (Φ .lx) d not | t | () c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) ... | t with t (case2 (s< sy with lv ox e1 {o∅} {y} refl x>y | Zero = lift ( ∅8 y (o<-subst (c<→o< {n} {ord→od y} {x} (def-subst {n} {x} {y} x>y refl (sym diso))) ord-iso eq )) e1 {o∅} {y} refl x>y | Suc lx = lift ( ∅8 y (o<-subst (c<→o< {n} {ord→od y} {x} (def-subst {n} {x} {y} x>y refl (sym diso))) ord-iso eq )) open _∧_ ∅9 : {n : Level} → (x : OD {n} ) → ¬ x == od∅ → o∅ o< od→ord x ∅9 x not = ∅5 ( od→ord x) lemma where lemma : ¬ od→ord x ≡ o∅ lemma eq = not ( ∅7 x eq ) OD→ZF : {n : Level} → ZF {suc n} {n} OD→ZF {n} = record { ZFSet = OD {n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } } ; isZF = isZF } where Replace : OD {n} → (OD {n} → OD {n} ) → OD {n} Replace X ψ = sup-od ψ Select : OD {n} → (OD {n} → Set n ) → OD {n} Select X ψ = record { def = λ x → ψ ( ord→od x ) } _,_ : OD {n} → OD {n} → OD {n} x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) } Union : OD {n} → OD {n} Union x = record { def = λ y → {z : Ordinal {n}} → def x z → def (ord→od z) y } Power : OD {n} → OD {n} Power x = record { def = λ y → (z : Ordinal {n} ) → ( def x y ∧ def (ord→od z) y ) } ZFSet = OD {n} _∈_ : ( A B : ZFSet ) → Set n A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set n _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) _∪_ : ( A B : ZFSet ) → ZFSet A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) infixr 200 _∈_ infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (OD {n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } }) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union→ = {!!} ; union← = {!!} ; empty = empty ; power→ = {!!} ; power← = {!!} ; extentionality = {!!} ; minimul = minimul ; regularity = {!!} ; infinity∅ = {!!} ; infinity = {!!} ; selection = {!!} ; replacement = {!!} } where open _∧_ open Minimumo pair : (A B : OD {n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = case1 refl proj2 (pair A B ) = case2 refl empty : (x : OD {n} ) → ¬ (od∅ ∋ x) empty x () union→ : (X x y : OD {n} ) → (X ∋ x) → (x ∋ y) → (Union X ∋ y) union→ X x y X∋x x∋y = {!!} where lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y lemma {z} X∋z = {!!} minord : (x : OD {n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) minord x not = ominimal (od→ord x) (∅9 x not) minimul : (x : OD {n} ) → ¬ (x == od∅ )→ OD {n} minimul x not = ord→od ( mino (minord x not)) minimul