{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module Tychonoff1 {n : Level } (O : Ordinals {n}) where open import logic open _∧_ open _∨_ open Bool import OD open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality import BAlgebra open BAlgebra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open ODC O open import filter O open import ZProduct O -- open import maximum-filter O open Filter Filter-Proj1 : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → Filter {Power P} {P} (λ x → x) Filter-Proj1 = ? Filter-Proj1-UF : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) → (FP : Filter {Power P} {P} (λ x → x) ) → ultra-filter FP Filter-Proj1-UF = ? filter-⊆ : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → {x : HOD} → filter F ∋ x → { z : Ordinal } → odef x z → odef (ZFP P Q) z filter-⊆ {P} {Q} F {x} fx {z} xz = f⊆L F fx _ (subst (λ k → odef k z) (sym *iso) xz ) rcf : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → RXCod (filter F) (ZFP Q P) (λ x fx → ZPmirror P Q x (filter-⊆ F fx)) rcf {P} {Q} F = record { ≤COD = λ {x} fx {z} ly → ZPmirror⊆ZFPBA P Q x (filter-⊆ F fx) ly } Filter-sym : {P Q a : HOD } → ZFP P Q ∋ a → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) Filter-sym {P} {Q} {z} pqz F = record { filter = fqp ; f⊆L = fqp