{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module ZProduct {n : Level } (O : Ordinals {n}) where open import logic import OD import ODUtil import OrdUtil open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open OD O open OD.OD open OD.HOD open ODAxiom odAxiom open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open _∧_ open _∨_ open Bool open _==_ <_,_> : (x y : HOD) → HOD < x , y > = (x , x) , (x , y) exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where left : {z : Ordinal} → odef (x , y) z → odef (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t right : {z : Ordinal} → odef (y , x) z → odef (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y xx=zy→x=y {x} {y} eq with trio< (& x) (& y) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where lemma3 : ( x , x ) =h= ( y , z ) lemma3 = ==-trans eq exg-pair lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) ... | refl = refl lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z lemmax : x ≡ x' lemmax with eq→ eq {& (x , x)} (case1 refl) lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' ... | refl = lemma1 (ord→== s ) lemmay : y ≡ y' lemmay with lemmax ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) prod-≡ : { x x' y y' : HOD } → < x , y > ≡ < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-≡ eq = prod-eq (ord→== (cong (&) eq )) -- -- unlike ordered pair, ZFPair is not a HOD data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) ZFPair : OD ZFPair = record { def = λ x → ord-pair x } -- _⊗_ : (A B : HOD) → HOD -- A ⊗ B = Union ( Replace' B (λ b lb → Replace' A (λ a la → < a , b > ) record { ≤COD = ? } ) ? ) -- product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > -- product→ {A} {B} {a} {b} A∋a B∋b = record { owner = _ ; ao = lemma1 ; ox = subst (λ k → odef k _) (sym *iso) lemma2 } where -- lemma1 : odef (Replace' B (λ b₁ lb → Replace' A (λ a₁ la → < a₁ , b₁ >) ? ) ? ) (& (Replace' A (λ a₁ la → < a₁ , b >) ? )) -- lemma1 = ? -- replacement← B b B∋b ? -- lemma2 : odef (Replace' A (λ a₁ la → < a₁ , b >) ? ) (& < a , b >) -- lemma2 = ? -- replacement← A a A∋a ? -- & (x , x) o< next (osuc (& x)) -- & (x , y) o< next (omax (& x) (& y)) -- & ((x , x) , (x , y)) o< next (omax (next (osuc (& x))) (next (omax (& x) (& y)))) -- o≤ next (next (omax (& A) (& B))) data ZFProduct (A B : HOD) : (p : Ordinal) → Set n where ab-pair : {a b : Ordinal } → odef A a → odef B b → ZFProduct A B ( & ( < * a , * b > ) ) ZFP : (A B : HOD) → HOD ZFP A B = record { od = record { def = λ x → ZFProduct A B x } ; odmax = omax (& A) (& B) ; ¬a ¬b b ZFP→ {A} {B} {a} {b} aa bb = subst (λ k → ZFProduct A B k ) (cong₂ (λ j k → & < j , k >) *iso *iso ) ( ab-pair aa bb ) zπ1 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal zπ1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb) = a zp1 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef A (zπ1 zx) zp1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = aa zπ2 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal zπ2 (ab-pair {a} {b} aa bb) = b zp2 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef B (zπ2 zx) zp2 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = bb zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl zp-iso1 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (* (zπ1 p) ≡ (* a)) ∧ (* (zπ2 p) ≡ (* b)) zp-iso1 {A} {B} {a} {b} pab = prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) zz11) ) where zz11 : & < * (zπ1 pab) , * (zπ2 pab) > ≡ & < * a , * b > zz11 = zp-iso pab zp-iso0 : { A B : HOD } → {a b : Ordinal } → (p : odef (ZFP A B) (& < * a , * b > )) → (zπ1 p ≡ a) ∧ (zπ2 p ≡ b) zp-iso0 {A} {B} {a} {b} pab = ⟪ subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj1 (zp-iso1 pab) )) , subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 (zp-iso1 pab) ) ) ⟫ -- ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x -- ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) -- ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x) -- ⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where -- zfp02 : Replace' A (λ z lz → < z , * a >) record { ≤COD = ? } ≡ * owner -- zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) -- zfp01 : odef (ZFP A B) (& x) -- zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox -- ... | t = ? -- -- ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba) ZPI1 : (A B : HOD) → HOD ZPI1 A B = Replace' (ZFP A B) ( λ x px → * (zπ1 px )) ? ZPI2 : (A B : HOD) → HOD ZPI2 A B = Replace' (ZFP A B) ( λ x px → * (zπ2 px )) ? ZFProj1-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a ZFProj1-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) ZFProj2-iso : {P Q : HOD} {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) ZPI1-iso : (A B : HOD) → {b : Ordinal } → odef B b → ZPI1 A B ≡ A ZPI1-iso P Q {q} qq = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where ty21 : {a b : Ordinal } → (pz : odef P a) → (qz : odef Q b) → ZFProduct P Q (& (* (& < * a , * b >))) ty21 pz qz = subst (odef (ZFP P Q)) (sym &iso) (ab-pair pz qz ) ty32 : {a b : Ordinal } → (pz : odef P a) → (qz : odef Q b) → zπ1 (ty21 pz qz) ≡ a ty32 {a} {b} pz qz = ty33 (ty21 pz qz) (cong (&) *iso) where ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) ty20 : {x : Ordinal} → odef (ZPI1 P Q) x → odef P x ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef P k) a=x pz where ty24 : * x ≡ * a ty24 = begin * x ≡⟨ cong (*) x=ψz ⟩ _ ≡⟨ *iso ⟩ * (zπ1 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair pz qz))) ≡⟨ cong (*) (ty32 pz qz) ⟩ * a ∎ where open ≡-Reasoning a=x : a ≡ x a=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24)) ty22 : {x : Ordinal} → odef P x → odef (ZPI1 P Q) x ty22 {x} px = record { z = _ ; az = ab-pair px qq ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) } where ty12 : * x ≡ * (zπ1 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair px qq ))) ty12 = begin * x ≡⟨ sym (cong (*) (ty32 px qq )) ⟩ * (zπ1 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair px qq ))) ∎ where open ≡-Reasoning ZPI2-iso : (A B : HOD) → {b : Ordinal } → odef A b → ZPI2 A B ≡ B ZPI2-iso P Q {p} pp = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where ty21 : {a b : Ordinal } → (pz : odef P a) → (qz : odef Q b) → ZFProduct P Q (& (* (& < * a , * b >))) ty21 pz qz = subst (odef (ZFP P Q)) (sym &iso) (ab-pair pz qz ) ty32 : {a b : Ordinal } → (pz : odef P a) → (qz : odef Q b) → zπ2 (ty21 pz qz) ≡ b ty32 {a} {b} pz qz = ty33 (ty21 pz qz) (cong (&) *iso) where ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) ty20 : {x : Ordinal} → odef (ZPI2 P Q) x → odef Q x ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef Q k) a=x qz where ty24 : * x ≡ * b ty24 = begin * x ≡⟨ cong (*) x=ψz ⟩ _ ≡⟨ *iso ⟩ * (zπ2 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair pz qz))) ≡⟨ cong (*) (ty32 pz qz) ⟩ * b ∎ where open ≡-Reasoning a=x : b ≡ x a=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24)) ty22 : {x : Ordinal} → odef Q x → odef (ZPI2 P Q) x ty22 {x} qx = record { z = _ ; az = ab-pair pp qx ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) } where ty12 : * x ≡ * (zπ2 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair pp qx))) ty12 = begin * x ≡⟨ sym (cong (*) (ty32 pp qx )) ⟩ * (zπ2 (subst (odef (ZFP P Q)) (sym &iso) (ab-pair pp qx ))) ∎ where open ≡-Reasoning record Func (A B : HOD) : Set n where field func : {x : Ordinal } → odef A x → Ordinal is-func : {x : Ordinal } → (ax : odef A x) → odef B (func ax ) data FuncHOD (A B : HOD) : (x : Ordinal) → Set n where felm : (F : Func A B) → FuncHOD A B (& ( Replace' A ( λ x ax → < x , (* (Func.func F {& x} ax )) > ) ? )) FuncHOD→F : {A B : HOD} {x : Ordinal} → FuncHOD A B x → Func A B FuncHOD→F {A} {B} (felm F) = F FuncHOD=R : {A B : HOD} {x : Ordinal} → (fc : FuncHOD A B x) → (* x) ≡ Replace' A ( λ x ax → < x , (* (Func.func (FuncHOD→F fc) ax)) > ) ? FuncHOD=R {A} {B} (felm F) = *iso -- -- Set of All function from A to B -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) Funcs : (A B : HOD) → HOD Funcs A B = record { od = record { def = λ x → FuncHOD A B x } ; odmax = osuc (& (ZFP A B)) ; ) lemma4 = ab-pair az (Func.is-func F (subst (λ k → odef A k) (sym &iso) az)) record Injection (A B : Ordinal ) : Set n where field i→ : (x : Ordinal ) → odef (* A) x → Ordinal iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt ) iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y record HODBijection (A B : HOD ) : Set n where field fun← : (x : Ordinal ) → odef A x → Ordinal fun→ : (x : Ordinal ) → odef B x → Ordinal funB : (x : Ordinal ) → ( lt : odef A x ) → odef B ( fun← x lt ) funA : (x : Ordinal ) → ( lt : odef B x ) → odef A ( fun→ x lt ) fiso← : (x : Ordinal ) → ( lt : odef B x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x fiso→ : (x : Ordinal ) → ( lt : odef A x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x hodbij-refl : { a b : HOD } → a ≡ b → HODBijection a b hodbij-refl {a} refl = record { fun← = λ x _ → x ; fun→ = λ x _ → x ; funB = λ x lt → lt ; funA = λ x lt → lt ; fiso← = λ x lt → refl ; fiso→ = λ x lt → refl } pj12 : (A B : HOD) {x : Ordinal} → (ab : odef (ZFP A B) x ) → (zπ1 (subst (odef (ZFP A B)) (sym &iso) ab) ≡ & (* (zπ1 ab ))) ∧ (zπ2 (subst (odef (ZFP A B)) (sym &iso) ab) ≡ & (* (zπ2 ab ))) pj12 A B (ab-pair {x} {y} ax by) = ⟪ subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj1 (prod-≡ pj24 ))) , subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 (prod-≡ pj24))) ⟫ where pj22 : odef (ZFP A B) (& (* (& < * x , * y >))) pj22 = subst (odef (ZFP A B)) (sym &iso) (ab-pair ax by) pj23 : & < * (zπ1 pj22 ) , * (zπ2 pj22) > ≡ & (* (& < * x , * y >) ) pj23 = zp-iso pj22 pj24 : < * (zπ1 (subst (odef (ZFP A B)) (sym &iso) (ab-pair ax by))) , * (zπ2 (subst (odef (ZFP A B)) (sym &iso) (ab-pair ax by))) > ≡ < * (& (* x)) , * (& (* y)) > pj24 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ( trans pj23 (trans &iso (sym (cong (&) (cong₂ (λ j k → < j , k >) *iso *iso)) )))) pj02 : (A B : HOD) (x : Ordinal) → (ab : odef (ZFP A B) x ) → odef (ZPI2 A B) (zπ2 ab) pj02 A B x ab = record { z = _ ; az = ab ; x=ψz = trans (sym &iso) (trans ( sym (proj2 (pj12 A B ab))) (sym &iso)) } pj01 : (A B : HOD) (x : Ordinal) → (ab : odef (ZFP A B) x ) → odef (ZPI1 A B) (zπ1 ab) pj01 A B x ab = record { z = _ ; az = ab ; x=ψz = trans (sym &iso) (trans ( sym (proj1 (pj12 A B ab))) (sym &iso)) } pj2 : (A B : HOD) (x : Ordinal) (lt : odef (ZFP A B) x) → odef (ZFP (ZPI2 A B) (ZPI1 A B)) (& < * (zπ2 lt) , * (zπ1 lt) >) pj2 A B x ab = ab-pair (pj02 A B x ab) (pj01 A B x ab) aZPI1 : (A B : HOD) {y : Ordinal} → odef (ZPI1 A B) y → odef A y aZPI1 A B {y} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef A k) (trans ( trans (sym &iso) (trans (sym (proj1 (pj12 A B az))) (sym &iso))) (sym x=ψz) ) ( zp1 az ) aZPI2 : (A B : HOD) {y : Ordinal} → odef (ZPI2 A B) y → odef B y aZPI2 A B {y} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef B k) (trans ( trans (sym &iso) (trans (sym (proj2 (pj12 A B az))) (sym &iso))) (sym x=ψz) ) ( zp2 az ) pj1 : (A B : HOD) (x : Ordinal) (lt : odef (ZFP (ZPI2 A B) (ZPI1 A B)) x) → odef (ZFP A B) (& < * (zπ2 lt) , * (zπ1 lt) >) pj1 A B _ (ab-pair ax by) = ab-pair (aZPI1 A B by) (aZPI2 A B ax) ZFPsym1 : (A B : HOD) → HODBijection (ZFP A B) (ZFP (ZPI2 A B) (ZPI1 A B)) ZFPsym1 A B = record { fun← = λ xy ab → & < * ( zπ2 ab) , * ( zπ1 ab) > ; fun→ = λ xy ab → & < * ( zπ2 ab) , * ( zπ1 ab) > ; funB = pj2 A B ; funA = pj1 A B ; fiso← = λ xy ab → pj00 A B ab ; fiso→ = λ xy ab → zp-iso ab } where pj10 : (A B : HOD) → {xy : Ordinal} → (ab : odef (ZFP (ZPI2 A B) (ZPI1 A B)) xy ) → & < * (zπ1 ab) , * (zπ2 ab) > ≡ & < * (zπ2 (pj1 A B xy ab)) , * (zπ1 (pj1 A B xy ab)) > pj10 A B {.(& < * _ , * _ >)} (ab-pair ax by ) = refl pj00 : (A B : HOD) → {xy : Ordinal} → (ab : odef (ZFP (ZPI2 A B) (ZPI1 A B)) xy ) → & < * (zπ2 (pj1 A B xy ab)) , * (zπ1 (pj1 A B xy ab)) > ≡ xy pj00 A B {xy} ab = trans (sym (pj10 A B ab)) (zp-iso {ZPI2 A B} {ZPI1 A B} {xy} ab) -- -- Bijection of (A x B) and (B x A) requires one element or axiom of choice -- ZFPsym : (A B : HOD) → {a b : Ordinal } → odef A a → odef B b → HODBijection (ZFP A B) (ZFP B A) ZFPsym A B aa bb = subst₂ ( λ j k → HODBijection (ZFP A B) (ZFP j k)) (ZPI2-iso A B aa) (ZPI1-iso A B bb) ( ZFPsym1 A B ) ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B ) proj1 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x zfp00 (ab-pair ⟪ pa , pb ⟫ qx) = ⟪ ab-pair pa qx , ab-pair pb qx ⟫ zfp01 : {x : Ordinal} → odef (ZFP A C ∩ ZFP B C) x → ZFProduct (A ∩ B) C x zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct (A ∩ B) C k) zfp07 ( ab-pair (zfp02 ⟪ p , q ⟫ ) (zfp04 q) ) where zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x zfp05 = zp-iso p zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x zfp06 = zp-iso q zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x zfp07 = trans (cong (λ k → & < k , * (zπ2 q) > ) (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06)))))))) zfp06 zfp02 : {x : Ordinal } → (acx : odef (ZFP A C ∩ ZFP B C) x) → odef (A ∩ B) (zπ1 (proj1 acx)) zfp02 {.(& < * _ , * _ >)} ⟪ ab-pair {a} {b} ax bx , bcx ⟫ = ⟪ ax , zfp03 bcx refl ⟫ where zfp03 : {x : Ordinal } → (bc : odef (ZFP B C) x) → x ≡ (& < * a , * b >) → odef B (zπ1 (ab-pair {A} {C} ax bx)) zfp03 (ab-pair {a1} {b1} x x₁) eq = subst (λ k → odef B k ) zfp08 x where zfp08 : a1 ≡ a zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj1 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq))))) zfp04 : {x : Ordinal } (acx : odef (ZFP B C) x )→ odef C (zπ2 acx) zfp04 (ab-pair x x₁) = x₁ proj2 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where zfp00 : {x : Ordinal} → ZFProduct C (A ∩ B) x → odef (ZFP C A ∩ ZFP C B) x zfp00 (ab-pair qx ⟪ pa , pb ⟫ ) = ⟪ ab-pair qx pa , ab-pair qx pb ⟫ zfp01 : {x : Ordinal} → odef (ZFP C A ∩ ZFP C B ) x → ZFProduct C (A ∩ B) x zfp01 {x} ⟪ p , q ⟫ = subst (λ k → ZFProduct C (A ∩ B) k) zfp07 ( ab-pair (zfp04 p) (zfp02 ⟪ p , q ⟫ ) ) where zfp05 : & < * (zπ1 p) , * (zπ2 p) > ≡ x zfp05 = zp-iso p zfp06 : & < * (zπ1 q) , * (zπ2 q) > ≡ x zfp06 = zp-iso q zfp07 : & < * (zπ1 p) , * (zπ2 q) > ≡ x zfp07 = trans (cong (λ k → & < * (zπ1 p) , k > ) (sym (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) (trans zfp05 (sym (zfp06))))))))) zfp05 zfp02 : {x : Ordinal } → (acx : odef (ZFP C A ∩ ZFP C B ) x) → odef (A ∩ B) (zπ2 (proj2 acx)) zfp02 {.(& < * _ , * _ >)} ⟪ bcx , ab-pair {b} {a} ax bx ⟫ = ⟪ zfp03 bcx refl , bx ⟫ where zfp03 : {x : Ordinal } → (bc : odef (ZFP C A ) x) → x ≡ (& < * b , * a >) → odef A (zπ2 (ab-pair {C} {B} ax bx )) zfp03 (ab-pair {b1} {a1} x x₁) eq = subst (λ k → odef A k ) zfp08 x₁ where zfp08 : a1 ≡ a zfp08 = subst₂ _≡_ &iso &iso (cong (&) (proj2 (prod-≡ (subst₂ _≡_ *iso *iso (cong (*) eq))))) zfp04 : {x : Ordinal } (acx : odef (ZFP C A ) x )→ odef C (zπ1 acx) zfp04 (ab-pair x x₁) = x open import BAlgebra O ZFP\Q : {P Q p : HOD} → (( ZFP P Q \ ZFP p Q ) ≡ ZFP (P \ p) Q ) ∧ (( ZFP P Q \ ZFP P p ) ≡ ZFP P (Q \ p) ) ZFP\Q {P} {Q} {p} = ⟪ ==→o≡ record { eq→ = ty70 ; eq← = ty71 } , ==→o≡ record { eq→ = ty73 ; eq← = ty75 } ⟫ where ty70 : {x : Ordinal } → odef ( ZFP P Q \ ZFP p Q ) x → odef (ZFP (P \ p) Q) x ty70 ⟪ ab-pair {a} {b} Pa pb , npq ⟫ = ab-pair ty72 pb where ty72 : odef (P \ p ) a ty72 = ⟪ Pa , (λ pa → npq (ab-pair pa pb ) ) ⟫ ty71 : {x : Ordinal } → odef (ZFP (P \ p) Q) x → odef ( ZFP P Q \ ZFP p Q ) x ty71 (ab-pair {a} {b} ⟪ Pa , npa ⟫ Qb) = ⟪ ab-pair Pa Qb , (λ pab → npa (subst (λ k → odef p k) (proj1 (zp-iso0 pab)) (zp1 pab)) ) ⟫ ty73 : {x : Ordinal } → odef ( ZFP P Q \ ZFP P p ) x → odef (ZFP P (Q \ p) ) x ty73 ⟪ ab-pair {a} {b} pa Qb , npq ⟫ = ab-pair pa ty72 where ty72 : odef (Q \ p ) b ty72 = ⟪ Qb , (λ qb → npq (ab-pair pa qb ) ) ⟫ ty75 : {x : Ordinal } → odef (ZFP P (Q \ p) ) x → odef ( ZFP P Q \ ZFP P p ) x ty75 (ab-pair {a} {b} Pa ⟪ Qb , nqb ⟫ ) = ⟪ ab-pair Pa Qb , (λ pab → nqb (subst (λ k → odef p k) (proj2 (zp-iso0 pab)) (zp2 pab)) ) ⟫