{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module Topology {n : Level } (O : Ordinals {n}) where open import zf open import logic open _∧_ open _∨_ open Bool import OD open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality import BAlgebra open BAlgebra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open ODC O open import filter O open import OPair O record Topology ( L : HOD ) : Set (suc n) where field OS : HOD OS⊆PL : OS ⊆ Power L o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P OS∋od∅ : OS ∋ od∅ --- we may add -- OS∋L : OS ∋ L -- closed Set CS : HOD CS = record { od = record { def = λ x → (* x ⊆ L) ∧ odef OS (& ( L \ (* x ))) } ; odmax = osuc (& L) ; ¬a ¬b c = & (ODC.minimal O (* fip00) (0 ¬a ¬b c = ? -- fip (λ x → x) (gi ?) -- Compact data Finite-∪ (S : HOD) : Ordinal → Set n where fin-e : {x : Ordinal } → * x ⊆ S → Finite-∪ S x fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) record Compact {L : HOD} (top : Topology L) : Set n where field finCover : {X : Ordinal } → (* X) ⊆ OS top → (* X) covers L → Ordinal isCover : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → (* (finCover xo xcp )) covers L isFinite : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → Finite-∪ (* X) (finCover xo xcp ) -- FIP is Compact FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top FIP→Compact {L} top fip with trio< (& L) o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri≈ ¬a b ¬c = record { finCover = λ _ _ → o∅ ; isCover = λ {X} _ xcp → fip01 xcp ; isFinite = fip00 } where -- L is empty fip02 : {x : Ordinal } → ¬ odef L x fip02 {x} Lx = ⊥-elim ( o<¬≡ (sym b) (∈∅< Lx) ) fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅ fip00 {X} xo xcp = fin-e ( λ {x} 0x → ⊥-elim (¬x<0 (subst (λ k → odef k x) o∅≡od∅ 0x) ) ) ... | tri> ¬a ¬b 0 ¬a ¬b c = c ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; sx = subst (λ k → Subbase (* C) k) b sc } )) where fip10 : * C ⊆ Replace' (* X) (λ z xz → L \ z) fip10 {w} cw = subst (λ k → odef k w) *iso ( C ¬a ¬b 0