open import Level open import Ordinals module filter {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open ODC O open _∧_ open _∨_ open Bool -- Kunen p.76 and p.53, we use ⊆ record Filter ( L : HOD ) : Set (suc n) where field filter : HOD f⊆L : filter ⊆ L filter1 : { p q : HOD } → L ∋ q → filter ∋ p → p ⊆ q → filter ∋ q filter2 : { p q : HOD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) open Filter record prime-filter { L : HOD } (F : Filter L) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) prime : {p q : HOD } → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) record ultra-filter { L : HOD } (P : HOD ) (F : Filter L) : Set (suc (suc n)) where field L⊆PP : L ⊆ Power P proper : ¬ (filter F ∋ od∅) ultra : {p : HOD } → L ∋ p → ( filter F ∋ p ) ∨ ( filter F ∋ ( P \ p) ) open _⊆_ ∈-filter : {L p : HOD} → (F : Filter L ) → filter F ∋ p → L ∋ p ∈-filter {L} {p} F lt = {!!} -- power→⊆ L p ( incl ? lt ) ∪-lemma1 : {L p q : HOD } → (p ∪ q) ⊆ L → p ⊆ L ∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) } ∪-lemma2 : {L p q : HOD } → (p ∪ q) ⊆ L → q ⊆ L ∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) } q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q q∩q⊆q = record { incl = λ lt → proj1 lt } open HOD ----- -- -- ultra filter is prime -- filter-lemma1 : {P L : HOD} → (F : Filter L) → ∀ {p q : HOD } → ultra-filter P F → prime-filter F filter-lemma1 {P} {L} F u = record { proper = ultra-filter.proper u ; prime = lemma3 } where lemma3 : {p q : HOD} → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) lemma3 {p} {q} lt with ultra-filter.ultra u {!!} -- (∪-lemma1 (∈-filter P lt) ) ... | case1 p∈P = case1 p∈P ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (L \ p)} {!!} lemma7 lemma8) where lemma5 : ((p ∪ q ) ∩ (L \ p)) =h= (q ∩ (L \ p)) lemma5 = record { eq→ = λ {x} lt → ⟪ lemma4 x lt , proj2 lt ⟫ ; eq← = λ {x} lt → ⟪ case2 (proj1 lt) , proj2 lt ⟫ } where lemma4 : (x : Ordinal ) → odef ((p ∪ q) ∩ (L \ p)) x → odef q x lemma4 x lt with proj1 lt lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx lemma6 : filter F ∋ ((p ∪ q ) ∩ (P \ p)) lemma6 = filter2 F lt ¬p∈P lemma7 : filter F ∋ (q ∩ (L \ p)) lemma7 = subst (λ k → filter F ∋ k ) (==→o≡ lemma5 ) {!!} lemma8 : (q ∩ (L \ p)) ⊆ q lemma8 = q∩q⊆q ----- -- -- if Filter contains L, prime filter is ultra -- filter-lemma2 : {P L : HOD} → (F : Filter L) → filter F ∋ L → prime-filter F → ultra-filter P F filter-lemma2 {P} {L} F f∋L prime = record { L⊆PP = {!!} ; proper = prime-filter.proper prime ; ultra = λ {p} p⊆L → prime-filter.prime prime {!!} -- (lemma p p⊆L) } where open _==_ p+1-p=1 : {p : HOD} → p ⊆ L → L =h= (p ∪ (L \ p)) eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (odef p x) eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 ⟪ lt , ¬p ⟫ eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef L k ) &iso (incl p⊆L ( subst (λ k → odef p k) (sym &iso) p∋x )) eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p ) = proj1 ¬p lemma : (p : HOD) → p ⊆ L → filter F ∋ (p ∪ (P \ p)) lemma p p⊆L = {!!} -- subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L record Dense (L : HOD ) : Set (suc n) where field dense : HOD d⊆P : dense ⊆ L dense-f : {p : HOD} → L ∋ p → HOD dense-d : { p : HOD} → (lt : L ∋ p) → dense ∋ dense-f lt dense-p : { p : HOD} → (lt : L ∋ p) → (dense-f lt) ⊆ p record Ideal ( L : HOD ) : Set (suc n) where field ideal : HOD i⊆L : ideal ⊆ L ideal1 : { p q : HOD } → L ∋ q → ideal ∋ p → q ⊆ p → ideal ∋ q ideal2 : { p q : HOD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) open Ideal proper-ideal : {L : HOD} → (P : Ideal L ) → {p : HOD} → Set n proper-ideal {L} P {p} = ideal P ∋ od∅ prime-ideal : {L : HOD} → Ideal L → ∀ {p q : HOD } → Set n prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) record GenericFilter (L : HOD) : Set (suc n) where field genf : Filter L generic : (D : Dense L ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ )