open import Level
open import Ordinals
module OD {n : Level } (O : Ordinals {n} ) where
open import zf
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core
open import logic
open import nat
open inOrdinal O
-- Ordinal Definable Set
record OD : Set (suc n ) where
field
def : (x : Ordinal ) → Set n
open OD
open _∧_
open _∨_
open Bool
record _==_ ( a b : OD ) : Set n where
field
eq→ : ∀ { x : Ordinal } → def a x → def b x
eq← : ∀ { x : Ordinal } → def b x → def a x
id : {n : Level} {A : Set n} → A → A
id x = x
eq-refl : { x : OD } → x == x
eq-refl {x} = record { eq→ = id ; eq← = id }
open _==_
eq-sym : { x y : OD } → x == y → y == x
eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq }
eq-trans : { x y z : OD } → x == y → y == z → x == z
eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) }
⇔→== : { x y : OD } → ( {z : Ordinal } → def x z ⇔ def y z) → x == y
eq→ ( ⇔→== {x} {y} eq ) {z} m = proj1 eq m
eq← ( ⇔→== {x} {y} eq ) {z} m = proj2 eq m
-- Ordinal in OD ( and ZFSet ) Transitive Set
Ord : ( a : Ordinal ) → OD
Ord a = record { def = λ y → y o< a }
od∅ : OD
od∅ = Ord o∅
postulate
-- OD can be iso to a subset of Ordinal ( by means of Godel Set )
od→ord : OD → Ordinal
ord→od : Ordinal → OD
c<→o< : {x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y
oiso : {x : OD } → ord→od ( od→ord x ) ≡ x
diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x
-- we should prove this in agda, but simply put here
==→o≡ : { x y : OD } → (x == y) → x ≡ y
-- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set
-- o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x
-- ord→od x ≡ Ord x results the same
-- supermum as Replacement Axiom
sup-o : ( Ordinal → Ordinal ) → Ordinal
sup-o< : { ψ : Ordinal → Ordinal } → ∀ {x : Ordinal } → ψ x o< sup-o ψ
-- contra-position of mimimulity of supermum required in Power Set Axiom
-- sup-x : {n : Level } → ( Ordinal → Ordinal ) → Ordinal
-- sup-lb : {n : Level } → { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ))
-- mimimul and x∋minimul is an Axiom of choice
minimul : (x : OD ) → ¬ (x == od∅ )→ OD
-- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x )
x∋minimul : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) )
-- minimulity (may proved by ε-induction )
minimul-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) )
_∋_ : ( a x : OD ) → Set n
_∋_ a x = def a ( od→ord x )
_c<_ : ( x a : OD ) → Set n
x c< a = a ∋ x
_c≤_ : OD → OD → Set (suc n)
a c≤ b = (a ≡ b) ∨ ( b ∋ a )
cseq : {n : Level} → OD → OD
cseq x = record { def = λ y → def x (osuc y) } where
def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x
def-subst df refl refl = df
sup-od : ( OD → OD ) → OD
sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )
sup-c< : ( ψ : OD → OD ) → ∀ {x : OD } → def ( sup-od ψ ) (od→ord ( ψ x ))
sup-c< ψ {x} = def-subst {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )}
lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where
lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x)))
lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) )
otrans : {n : Level} {a x y : Ordinal } → def (Ord a) x → def (Ord x) y → def (Ord a) y
otrans x ¬a ¬b c = no ¬b
ppp : { p : Set n } { a : OD } → record { def = λ x → p } ∋ a → p
ppp {p} {a} d = d
--
-- Axiom of choice in intutionistic logic implies the exclude middle
-- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog
--
p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice
p∨¬p p with is-o∅ ( od→ord ( record { def = λ x → p } ))
p∨¬p p | yes eq = case2 (¬p eq) where
ps = record { def = λ x → p }
lemma : ps == od∅ → p → ⊥
lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq p0 )
¬p : (od→ord ps ≡ o∅) → p → ⊥
¬p eq = lemma ( subst₂ (λ j k → j == k ) oiso o∅≡od∅ ( o≡→== eq ))
p∨¬p p | no ¬p = case1 (ppp {p} {minimul ps (λ eq → ¬p (eqo∅ eq))} lemma) where
ps = record { def = λ x → p }
eqo∅ : ps == od∅ → od→ord ps ≡ o∅
eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq))
lemma : ps ∋ minimul ps (λ eq → ¬p (eqo∅ eq))
lemma = x∋minimul ps (λ eq → ¬p (eqo∅ eq))
∋-p : ( p : Set n ) → Dec p -- assuming axiom of choice
∋-p p with p∨¬p p
∋-p p | case1 x = yes x
∋-p p | case2 x = no x
double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic
double-neg-eilm {A} notnot with ∋-p A -- assuming axiom of choice
... | yes p = p
... | no ¬p = ⊥-elim ( notnot ¬p )
OrdP : ( x : Ordinal ) ( y : OD ) → Dec ( Ord x ∋ y )
OrdP x y with trio< x (od→ord y)
OrdP x y | tri< a ¬b ¬c = no ¬c
OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl )
OrdP x y | tri> ¬a ¬b c = yes c
-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
-- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n)
in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD
in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) }
-- Power Set of X ( or constructible by λ y → def X (od→ord y )
ZFSubset : (A x : OD ) → OD
ZFSubset A x = record { def = λ y → def A y ∧ def x y } -- roughly x = A → Set
Def : (A : OD ) → OD
Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) )
_⊆_ : ( A B : OD ) → ∀{ x : OD } → Set n
_⊆_ A B {x} = A ∋ x → B ∋ x
infixr 220 _⊆_
subset-lemma : {A x y : OD } → ( x ∋ y → ZFSubset A x ∋ y ) ⇔ ( _⊆_ x A {y} )
subset-lemma {A} {x} {y} = record {
proj1 = λ z lt → proj1 (z lt)
; proj2 = λ x⊆A lt → record { proj1 = x⊆A lt ; proj2 = lt }
}
-- Constructible Set on α
-- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x }
-- L (Φ 0) = Φ
-- L (OSuc lv n) = { Def ( L n ) }
-- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) )
-- L : {n : Level} → (α : Ordinal ) → OD
-- L record { lv = Zero ; ord = (Φ .0) } = od∅
-- L record { lv = lx ; ord = (OSuc lv ox) } = Def ( L ( record { lv = lx ; ord = ox } ) )
-- L record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α )
-- cseq ( Ord (od→ord (L (record { lv = lx ; ord = Φ lx }))))
-- L0 : {n : Level} → (α : Ordinal ) → L (osuc α) ∋ L α
-- L1 : {n : Level} → (α β : Ordinal ) → α o< β → ∀ (x : OD ) → L α ∋ x → L β ∋ x
OD→ZF : ZF
OD→ZF = record {
ZFSet = OD
; _∋_ = _∋_
; _≈_ = _==_
; ∅ = od∅
; _,_ = _,_
; Union = Union
; Power = Power
; Select = Select
; Replace = Replace
; infinite = infinite
; isZF = isZF
} where
ZFSet = OD
Select : (X : OD ) → ((x : OD ) → Set n ) → OD
Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) }
Replace : OD → (OD → OD ) → OD
Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x }
_,_ : OD → OD → OD
x , y = Ord (omax (od→ord x) (od→ord y))
_∩_ : ( A B : ZFSet ) → ZFSet
A ∩ B = record { def = λ x → def A x ∧ def B x }
Union : OD → OD
Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) }
_∈_ : ( A B : ZFSet ) → Set n
A ∈ B = B ∋ A
Power : OD → OD
Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x )
{_} : ZFSet → ZFSet
{ x } = ( x , x )
data infinite-d : ( x : Ordinal ) → Set n where
iφ : infinite-d o∅
isuc : {x : Ordinal } → infinite-d x →
infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) ))
infinite : OD
infinite = record { def = λ x → infinite-d x }
infixr 200 _∈_
-- infixr 230 _∩_ _∪_
isZF : IsZF (OD ) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite
isZF = record {
isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans }
; pair = pair
; union→ = union→
; union← = union←
; empty = empty
; power→ = power→
; power← = power←
; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w}
-- ; ε-induction = {!!}
; infinity∅ = infinity∅
; infinity = infinity
; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y}
; replacement← = replacement←
; replacement→ = replacement→
; choice-func = choice-func
; choice = choice
} where
pair : (A B : OD ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B)
proj1 (pair A B ) = omax-x (od→ord A) (od→ord B)
proj2 (pair A B ) = omax-y (od→ord A) (od→ord B)
empty : (x : OD ) → ¬ (od∅ ∋ x)
empty x = ¬x<0
o<→c< : {x y : Ordinal } {z : OD }→ x o< y → _⊆_ (Ord x) (Ord y) {z}
o<→c< lt lt1 = ordtrans lt1 lt
⊆→o< : {x y : Ordinal } → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y
⊆→o< {x} {y} lt with trio< x y
⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc
⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc
⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl )
... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl ))
union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z
union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx
; proj2 = subst ( λ k → def k (od→ord z)) (sym oiso) (proj2 xx) } ))
union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z )))
union← X z UX∋z = TransFiniteExists _ lemma UX∋z where
lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z))
lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx }
ψiso : {ψ : OD → Set n} {x y : OD } → ψ x → x ≡ y → ψ y
ψiso {ψ} t refl = t
selection : {ψ : OD → Set n} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y)
selection {ψ} {X} {y} = record {
proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) }
; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso }
}
replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x
replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where
lemma : def (in-codomain X ψ) (od→ord (ψ x))
lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} ))
replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (x == ψ y))
replacement→ {ψ} X x lt = contra-position lemma (lemma2 (proj2 lt)) where
lemma2 : ¬ ((y : Ordinal) → ¬ def X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y))))
→ ¬ ((y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)))
lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where
lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y))) → (ord→od (od→ord x) == ψ (ord→od y))
lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq )
lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (ord→od y)) )
lemma not y not2 = not (ord→od y) (subst (λ k → k == ψ (ord→od y)) oiso ( proj2 not2 ))
---
--- Power Set
---
--- First consider ordinals in OD
---
--- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A
--- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A
--
--
∩-≡ : { a b : OD } → ({x : OD } → (a ∋ x → b ∋ x)) → a == ( b ∩ a )
∩-≡ {a} {b} inc = record {
eq→ = λ {x} x