{-# OPTIONS --allow-unsolved-metas #-} open import Level hiding ( suc ; zero ) open import Ordinals open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import OD module zorn {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) (PO : IsStrictPartialOrder _≡_ _<_ ) where -- -- Zorn-lemma : { A : HOD } -- → o∅ o< & A -- → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → SUP A B ) -- SUP condition -- → Maximal A -- open import zf open import logic -- open import partfunc {n} O open import Relation.Nullary open import Data.Empty import BAlgbra open import Data.Nat hiding ( _<_ ; _≤_ ) open import Data.Nat.Properties open import nat open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open _∧_ open _∨_ open Bool open HOD -- -- Partial Order on HOD ( possibly limited in A ) -- _<<_ : (x y : Ordinal ) → Set n -- Set n order x << y = * x < * y POO : IsStrictPartialOrder _≡_ _<<_ POO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; trans = IsStrictPartialOrder.trans PO ; irrefl = λ x=y x ¬a ¬b c = ⊥-elim ( nat-≤> x ¬a ¬b c = tri> (λ lt → <-irr (case2 fc12) lt) (λ eq → <-irr (case1 eq) fc12) fc12 where fc12 : * y < * x fc12 = fcn-< {A} s {y} {x} {f} mf cy cx c fcn-imm : {A : HOD} (s : Ordinal) { x y : Ordinal } (f : Ordinal → Ordinal) (mf : ≤-monotonic-f A f) → (cx : FClosure A f s x) → (cy : FClosure A f s y ) → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) fcn-imm {A} s {x} {y} f mf cx cy ⟪ x ¬a ¬b c = ⊥-elim ( nat-≤> y ¬a ¬b c with fc20 c -- ncy < suc ncx ... | case1 y=x = <-irr (case1 ( fcn-inject s mf cy cx y=x )) x ¬a ¬b c = ⊥-elim z17 where z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) z15 = SUP.x ¬a ¬b y ¬a ¬b c = ZChain.chain zc seq : ZChain.chain zc ≡ supf0 x seq with trio< x x ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl seq ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b c = schain A∋schain : {x : HOD } → schain ∋ x → A ∋ x A∋schain (case1 zx ) = ZChain.chain⊆A zc zx A∋schain {y} (case2 fx ) = A∋fc (& sp) f mf fx s⊆A : schain ⊆' A s⊆A {x} (case1 zx) = ZChain.chain⊆A zc zx s⊆A {x} (case2 fx) = A∋fc (& sp) f mf fx cmp : {a b : HOD} (za : odef chain0 (& a)) (fb : FClosure A f (& sp) (& b)) → Tri (a < b) (a ≡ b) (b < a ) cmp {a} {b} za fb with SUP.x ¬c (λ eq → ¬b (sym eq)) a ... | tri≈ ¬a b ¬c = tri≈ ¬c (sym b) ¬a ... | tri> ¬a ¬b c = tri< c (λ eq → ¬b (sym eq)) ¬a scmp (case2 fa) (case2 fb) = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp (& sp) f mf fa fb) scnext : {a : Ordinal} → odef schain a → odef schain (f a) scnext {x} (case1 zx) = case1 (ZChain.f-next zc zx) scnext {x} (case2 sx) = case2 ( fsuc x sx ) scinit : {x : Ordinal} → odef schain x → * y ≤ * x scinit {x} (case1 zx) = ZChain.initial zc zx scinit {x} (case2 sx) with (s≤fc (& sp) f mf sx ) | SUP.x ¬a ¬b c = refl seq ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b y ¬a ¬b c = Uz seq : Uz ≡ supf0 x seq with trio< x x ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl seq ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b₁ c = λ lt → {!!} ... | tri≈ ¬a b ¬c | s = {!!} -- λ lt → lt ... | tri> ¬a ¬b c | s = {!!} -- λ lt → lt SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) postulate TFcomm : { ψ : Ordinal → Set (Level.suc n) } → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x record ZChain1 ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) : Set (Level.suc n) where field zc : ZChain A y f (& A) supf = ZChain.supf zc field chain-mono : {x y : Ordinal} → x o≤ y → supf x ⊆' supf y f-total : {x : Ordinal} → IsTotalOrderSet (supf x) SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) → ZChain1 f mf ay SZ1 f mf {y} ay = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) ; chain-mono = mono sf ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where sf : Ordinal → HOD sf x = ZChain.supf (TransFinite (ind f mf ay) (& A)) x mono : {x : Ordinal} {w : Ordinal} (sf : Ordinal → HOD) → x o≤ w → sf x ⊆' sf w mono {a} {b} sf a≤b = TransFinite0 {λ b → a o≤ b → sf a ⊆' sf b } mind b a≤b where mind : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → a o≤ y₁ → sf a ⊆' sf y₁) → a o≤ x → sf a ⊆' sf x mind = {!!} zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal