open import Level module ordinal-definable where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open OD open import Data.Unit open Ordinal record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : OD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } postulate -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ -- a contra-position of minimality of supermum sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-min : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → {z : Ordinal {n}} → ψ z o< z → sup-o ψ o< osuc z minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) Ord : { n : Level } → ( a : Ordinal {suc n} ) → OD {suc n} Ord {n} a = record { def = λ y → y o< a } _c<_ : { n : Level } → ( x a : Ordinal {n} ) → Set n x c< a = Ord a ∋ Ord x c<→o< : { n : Level } → { x a : OD {n} } → record { def = λ y → y o< od→ord a } ∋ x → od→ord x o< od→ord a c<→o< lt = lt o<→c< : { n : Level } → { x a : OD {n} } → od→ord x o< od→ord a → record { def = λ y → y o< od→ord a } ∋ x o<→c< lt = lt ==→o≡' : {n : Level} → { x y : Ordinal {suc n} } → Ord x == Ord y → x ≡ y ==→o≡' {n} {x} {y} eq with trio< {n} x y ==→o≡' {n} {x} {y} eq | tri< a ¬b ¬c with eq← eq {x} a ... | t = ⊥-elim ( o<¬≡ x x refl t ) ==→o≡' {n} {x} {y} eq | tri≈ ¬a refl ¬c = refl ==→o≡' {n} {x} {y} eq | tri> ¬a ¬b c with eq→ eq {y} c ... | t = ⊥-elim ( o<¬≡ y y refl t ) ∅∨ : { n : Level } → { x y : Ordinal {suc n} } → ( Ord {n} x == Ord y ) ∨ ( ¬ ( Ord x == Ord y ) ) ∅∨ {n} {x} {y} with trio< x y ∅∨ {n} {x} {y} | tri< a ¬b ¬c = case2 ( λ eq → ¬b ( ==→o≡' eq ) ) ∅∨ {n} {x} {y} | tri≈ ¬a refl ¬c = case1 ( record { eq→ = id ; eq← = id } ) ∅∨ {n} {x} {y} | tri> ¬a ¬b c = case2 ( λ eq → ¬b ( ==→o≡' eq ) ) ¬x∋x' : { n : Level } → { x : Ordinal {n} } → ¬ ( record { def = λ y → y o< x } ∋ record { def = λ y → y o< x } ) ¬x∋x' {n} {record { lv = Zero ; ord = ord }} (case1 ()) ¬x∋x' {n} {record { lv = Suc lx ; ord = Φ .(Suc lx) }} (case1 (s≤s x)) = ¬x∋x' {n} {record { lv = lx ; ord = Φ lx }} (case1 {!!}) ¬x∋x' {n} {record { lv = Suc lx ; ord = OSuc (Suc lx) ox }} (case1 (s≤s x)) = ¬x∋x' {n} {record { lv = Suc lx ; ord = ox}} (case1 {!!}) ¬x∋x' {n} {record { lv = lv ; ord = Φ (lv) }} (case2 ()) ¬x∋x' {n} {record { lv = lv ; ord = OSuc (lv) ox }} (case2 x) = ¬x∋x' {n} {record { lv = lv ; ord = ox }} (case2 {!!}) ¬x∋x : { n : Level } → { x : OD {n} } → ¬ x ∋ x ¬x∋x = {!!} oc-lemma : { n : Level } → { x : OD {n} } → { oa : Ordinal {n} } → def (record { def = λ y → y o< oa }) oa → ⊥ oc-lemma {n} {x} {oa} lt = o<¬≡ oa oa refl lt oc-lemma1 : { n : Level } → { x : OD {n} } → { oa : Ordinal {n} } → od→ord (record { def = λ y → y o< oa }) o< oa → ⊥ oc-lemma1 {n} {x} {oa} lt = ¬x∋x' {n} lt -- lt : def (record { def = λ y → y o< oa }) (record { def = λ y → y o< oa }) oc-lemma2 : { n : Level } → { x a : OD {n} } → { oa : Ordinal {n} } → oa o< od→ord (record { def = λ y → y o< oa }) → ⊥ oc-lemma2 {n} {x} {oa} lt = {!!} _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df o<-def : {n : Level } {x y : Ordinal {n} } → x o< y → def (record { def = λ x → x o< y }) x o<-def x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x→¬< x : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} {!!} oiso refl ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl {!!} ... | () o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} {!!} oiso refl ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl {!!} ... | () ==→o≡ : {n : Level} → { x y : Ordinal {suc n} } → ord→od x == ord→od y → x ≡ y ==→o≡ {n} {x} {y} eq with trio< {n} x y ==→o≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso ))) ==→o≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b ==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso ))) ≡-def : {n : Level} → { x : Ordinal {suc n} } → x ≡ od→ord (record { def = λ z → z o< x } ) ≡-def {n} {x} = ==→o≡ {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where lemma : ord→od x == record { def = λ z → z o< x } eq→ lemma {w} lt = {!!} -- ?subst₂ (λ k j → k o< j ) diso refl (subst (λ k → (od→ord ( ord→od w)) o< k ) diso t ) where --t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) --t = o<-subst lt ? ? eq← lemma {w} lt = def-subst {suc n} {_} {_} {ord→od x} {w} {!!} refl refl od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) ==→o≡1 : {n : Level} → { x y : OD {suc n} } → x == y → od→ord x ≡ od→ord y ==→o≡1 eq = ==→o≡ (subst₂ (λ k j → k == j ) (sym oiso) (sym oiso) eq ) ==-def-l : {n : Level } {x y : Ordinal {suc n} } { z : OD {suc n} }→ (ord→od x == ord→od y) → def z x → def z y ==-def-l {n} {x} {y} {z} eq z>x = subst ( λ k → def z k ) (==→o≡ eq) z>x ==-def-r : {n : Level } {x y : OD {suc n} } { z : Ordinal {suc n} }→ (x == y) → def x z → def y z ==-def-r {n} {x} {y} {z} eq z>x = subst (λ k → def k z ) (subst₂ (λ j k → j ≡ k ) oiso oiso (cong (λ k → ord→od k) (==→o≡1 eq))) z>x ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a ∋→o< {n} {a} {x} lt = t where t : (od→ord x) o< (od→ord a) t = {!!} o<∋→ : {n : Level} → { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso refl t where t : def (ord→od (od→ord a)) (od→ord x) t = {!!} o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅' {suc n} o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅' {suc n} )) o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where lemma : o∅ {suc n } o< (od→ord (od∅' {suc n} )) → ⊥ lemma lt with def-subst {suc n} {_} {_} {_} {_} ( o<→c< ( o<-subst lt (sym diso) refl ) ) refl diso lemma lt | t = {!!} o∅≡od∅ {n} | tri≈ ¬a b ¬c = trans (cong (λ k → ord→od k ) b ) oiso o∅≡od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) o<→¬== {n} {x} {y} lt eq = o<→o> eq lt o<→¬c> : {n : Level} → { x y : Ordinal {n} } → x o< y → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt {!!} where o≡→¬c< : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ x y {!!} {!!} tri-c< : {n : Level} → Trichotomous _≡_ (_c<_ {suc n}) tri-c< {n} x y with trio< {n} x y tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst {!!} oiso refl) {!!} ( o<→¬c> a ) tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) {!!} (o≡→¬c< (sym b)) tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → {!!} ) (def-subst {!!} oiso refl) c<> : {n : Level } { x y : Ordinal {suc n}} → x c< y → y c< x → ⊥ c<> {n} {x} {y} x {n} {x} {y} x {n} {x} {y} x {!!} {!!} c<> {n} {x} {y} x ¬a ¬b c = ¬a x {n} {{!!}} {{!!}} {!!} {!!} def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) open _∧_ ¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n} ¬∅=→∅∈ {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where lemma : (ox : Ordinal {suc n}) → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} lemma ox ne with is-o∅ ox lemma ox ne | yes refl with ne ( ord→== lemma1 ) where lemma1 : od→ord (ord→od o∅) ≡ od→ord od∅ lemma1 = cong ( λ k → od→ord k ) {!!} lemma o∅ ne | yes refl | () lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) {!!} {!!} -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) csuc : {n : Level} → OD {suc n} → OD {suc n} csuc x = ord→od ( osuc ( od→ord x )) -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} ZFSubset A x = record { def = λ y → def A y ∧ def x y } Def : {n : Level} → (A : OD {suc n}) → OD {suc n} Def {n} A = record { def = λ y → y o< ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )))) } -- Constructible Set on α L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) } OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) ; isZF = isZF } where Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = sup-od ψ Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = record { def = λ z → z o< (omax (od→ord x) (od→ord y)) } Union : OD {suc n} → OD {suc n} Union U = record { def = λ y → osuc y o< (od→ord U) } -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) Power : OD {suc n} → OD {suc n} Power A = Def A ZFSet = OD {suc n} _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) -- _∪_ : ( A B : ZFSet ) → ZFSet -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) {_} : ZFSet → ZFSet { x } = ( x , x ) infixr 200 _∈_ -- infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (ord→od ( record { lv = Suc Zero ; ord = Φ 1} )) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union-u = λ _ z _ → csuc z ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = extensionality ; minimul = minimul ; regularity = regularity ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} ; replacement = replacement } where open _∧_ pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () --- --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- -- if Power A ∋ t, from a minimulity of sup, there is osuc ZFSubset A ∋ t -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x -- In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity -- power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = proj1 lemma-s where minsup : OD minsup = ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) lemma-t : csuc minsup ∋ t lemma-t = {!!} lemma-s : ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x lemma-s = {!!} -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t -- power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = def-subst {suc n} {_} {_} {Power A} {od→ord t} {!!} refl lemma1 where lemma-eq : ZFSubset A t == t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = record { proj2 = w ; proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (==→o≡1 (lemma-eq)) lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x))) lemma = sup-o< union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → csuc z ∋ z union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} {!!} refl refl union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) union→ X y u xx | tri< a ¬b ¬c with osuc-< a {!!} union→ X y u xx | tri< a ¬b ¬c | () union→ X y u xx | tri≈ ¬a b ¬c = lemma b {!!} where lemma : {oX ou ooy : Ordinal {suc n}} → ou ≡ ooy → ou o< oX → ooy o< oX lemma refl lt = lt union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c {!!} union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ csuc z) ∧ (csuc z ∋ z ) union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} {!!} oiso (sym diso) ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = record { proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x replacement {ψ} X x = sup-c< ψ {x} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = x∋minimul x not proj2 (regularity x not ) = record { eq→ = reg ; eq← = λ () } where reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y reg {y} t with minimul-1 x not (ord→od y) (proj2 t ) ... | t1 = lift t1 extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d xx-union : {x : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x)) xxx-union : {x : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} xxx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) lemma where lemma1 : {x : OD {suc n}} → od→ord x o< od→ord (x , x) lemma1 {x} = {!!} lemma2 : {x : OD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) (sym ≡-def) lemma : {x : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) uxxx-union : {x : OD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k } ) lemma where lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) (sym ≡-def ) uxxx-2 : {x : OD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt uxxx-ord : {x : OD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) (==→o≡ (subst₂ (λ j k → j == k ) (sym oiso) (sym od≡-def ) uxxx-2 )) omega = record { lv = Suc Zero ; ord = Φ 1 } infinite : OD {suc n} infinite = ord→od ( omega ) infinity∅ : ord→od ( omega ) ∋ od∅ {suc n} infinity∅ = def-subst {suc n} {_} {o∅} {infinite} {od→ord od∅} {!!} refl (subst ( λ k → ( k ≡ od→ord od∅ )) diso (cong (λ k → od→ord k) {!!} )) infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where t : od→ord x o< od→ord (ord→od (omega)) t = ∋→o< {n} {infinite} {x} lt infinite∋uxxx : (x : OD) → osuc (od→ord x) o< omega → infinite ∋ Union (x , (x , x )) infinite∋uxxx x lt = o<∋→ t where t : od→ord (Union (x , (x , x))) o< od→ord (ord→od (omega)) t = subst (λ k → od→ord (Union (x , (x , x))) o< k ) (sym diso ) ( subst ( λ k → k o< omega ) ( sym (uxxx-ord {x} ) ) lt ) infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) infinity x lt = infinite∋uxxx x ( lemma (od→ord x) (infinite∋x x lt )) where lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] record Choice (z : OD {suc n}) : Set (suc (suc n)) where field u : {x : OD {suc n}} ( x∈z : x ∈ z ) → OD {suc n} t : {x : OD {suc n}} ( x∈z : x ∈ z ) → (x : OD {suc n} ) → OD {suc n} choice : { x : OD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } -- choice : {x : OD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → -- axiom-of-choice : { X : OD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : OD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!}