{-# OPTIONS --allow-unsolved-metas #-} open import Level hiding ( suc ; zero ) open import Ordinals import OD module zorn {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) where open import zf open import logic -- open import partfunc {n} O open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import BAlgbra open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open _∧_ open _∨_ open Bool open HOD _≤_ : (x y : HOD) → Set (Level.suc n) x ≤ y = ( x ≡ y ) ∨ ( x < y ) record Element (A : HOD) : Set (Level.suc n) where field elm : HOD is-elm : A ∋ elm open Element _z : { a : Ordinal } → z o< osuc a → ¬ odef chain a f-total : IsTotalOrderSet chain f-next : {a : Ordinal } → odef chain a → a o< z → odef chain (f a) f-immediate : { x y : Ordinal } → odef chain x → odef chain y → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) is-max : {a b : Ordinal } → (ca : odef chain a ) → (ba : odef A b) → a o< z → Prev< A chain ba f ∨ (sup (& chain) (subst (λ k → k ⊆ A) (sym *iso) chain⊆A) (subst (λ k → IsTotalOrderSet k) (sym *iso) f-total) ≡ b ) → * a < * b → odef chain b Zorn-lemma : { A : HOD } → o∅ o< & A → IsPartialOrderSet A → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → SUP A B ) -- SUP condition → Maximal A Zorn-lemma {A} 0 ¬a ¬b c = ⊥-elim z17 where z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) z15 = SUP.xz = λ {a} xz zc0 (ordtrans (subst (λ k → px o< k ) (Oprev.oprev=x op) <-osuc ) xz zc0 (subst (λ k → k o< osuc a) b <-osuc ) za ) ... | tri> ¬a ¬b c = ⊥-elim ( ZChain.¬chain∋x>z zc0 (ordtrans c <-osuc ) za ) ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op zc0 : ZChain A sa f mf supO (Oprev.oprev op) zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) Afx : { x : Ordinal } → A ∋ * x → A ∋ * (f x) Afx {x} ax = (subst (λ k → odef A k ) (sym &iso) (proj2 (mf x (subst (λ k → odef A k ) &iso ax)))) -- x is in the previous chain, use the same -- x has some y which y < x ∧ f y ≡ x -- x has no y which y < x zc4 : ZChain A sa f mf supO x zc4 with ODC.p∨¬p O ( Prev< A (ZChain.chain zc0) ax f ) ... | case1 y = zc7 where -- we have previous < chain = ZChain.chain zc0 zc7 : ZChain A sa f mf supO x zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) ) ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5 ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = {!!} } where -- extend with f x -- cahin ∋ y ∧ chain ∋ f y ∧ x ≡ f ( f y ) zc5 : HOD zc5 = record { od = record { def = λ z → odef (ZChain.chain zc0) z ∨ (z ≡ f x) } ; odmax = & A ; (z01 ax (Afx ax) (case2 zc14)) (λ lt → z01 (Afx ax) ax (case1 lt) zc14) zc14 where zc14 : * x < * (f x) zc14 = subst (λ k → * x < k ) (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym &iso ))) xzc (subst (λ k → odef chain k) {!!} c )) ... | case2 fx | case1 c with ODC.p∨¬p O ( Prev< A chain (incl (ZChain.chain⊆A zc0) c) f ) ... | case2 n = {!!} ... | case1 fb with IsStrictTotalOrder.compare (ZChain.f-total zc0) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay y))) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay fb))) ... | tri< a₁ ¬b ¬c = {!!} ... | tri≈ ¬a b₁ ¬c = subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) zc11 zc10 ( fx=zc zc12 ) where zc10 : * x ≡ b zc10 = subst₂ (λ j k → j ≡ k ) (zc8 ax y ) (zc8 (incl ( ZChain.chain⊆A zc0 ) c) fb) (cong (λ k → * ( f ( & k ))) b₁) zc11 : * (f x) ≡ a zc11 = subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym fx)) zc12 : odef chain x zc12 = subst (λ k → odef chain k ) (subst (λ k → & b ≡ k ) &iso (sym (cong (&) zc10))) c ... | tri> ¬a ¬b c₁ = {!!} zc6 : IsTotalOrderSet zc5 zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} ; compare = cmp } ... | case2 not with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) )) ... | case1 y = {!!} -- x is sup ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = ZChain.chain∋x zc0 ; is-max = {!!} } -- no extention ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = ZChain.chain∋x zc0 ; is-max = {!!} } where zc0 = prev (& A) a ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = record { chain = uzc ; chain⊆A = record { incl = λ {x} lt → proj1 lt } ; f-total = {!!} ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } where uzc : HOD uzc = UZFChain f mf x prev zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal