open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODC import OPair open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open OPair O open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open _∧_ open _∨_ open Bool open _==_ open HOD -- _⊗_ : (A B : HOD) → HOD -- A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) Func : OD Func = record { def = λ x → def ZFProduct x ∧ ( (a b c : Ordinal) → odef (* x) (& < * a , * b >) ∧ odef (* x) (& < * a , * c >) → b ≡ c ) } FuncP : ( A B : HOD ) → HOD FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) } ; odmax = odmax (ZFP A B) ; ))) -- Func∋f = {!!} -- FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) -- → odef (FuncP A B) (& (Replace A (λ x → < x , f x > ))) -- FuncP∋f = {!!} -- Func→f : {A B f x : HOD} → def Func (& f) → (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y )) -- Func→f = {!!} -- Func₁ : {A B f : HOD} → def Func (& f) → {!!} -- Func₁ = {!!} -- Cod : {A B f : HOD} → def Func (& f) → {!!} -- Cod = {!!} -- 1-1 : {A B f : HOD} → def Func (& f) → {!!} -- 1-1 = {!!} -- onto : {A B f : HOD} → def Func (& f) → {!!} -- onto = {!!} record Injection (A B : Ordinal ) : Set n where field i→ : (x : Ordinal ) → odef (* B) x → Ordinal iA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( i→ x lt ) iiso : (x y : Ordinal ) → ( ltx : odef (* B) x ) ( lty : odef (* B) y ) → i→ x ltx ≡ i→ y lty → x ≡ y record Bijection (A B : Ordinal ) : Set n where field fun← : (x : Ordinal ) → odef (* A) x → Ordinal fun→ : (x : Ordinal ) → odef (* B) x → Ordinal funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt ) funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt ) fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x Bernstein : {a b : Ordinal } → Injection a b → Injection b a → Bijection a b Bernstein = {!!} _=c=_ : ( A B : HOD ) → Set n A =c= B = Bijection ( & A ) ( & B ) _c<_ : ( A B : HOD ) → Set n A c< B = Injection (& A) (& B) Card : OD Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x } record Cardinal (a : Ordinal ) : Set (suc n) where field card : Ordinal ciso : Bijection a card cmax : (x : Ordinal) → card o< x → ¬ Bijection a x Cantor1 : { u : HOD } → u c< Power u Cantor1 = {!!} Cantor2 : { u : HOD } → ¬ ( u =c= Power u ) Cantor2 = {!!}