{-# OPTIONS --cubical-compatible --safe #-} open import Level open import Ordinals open import logic open import Relation.Nullary open import Level open import Ordinals import HODBase import OD open import Relation.Nullary module PFOD {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O) (ho< : OD.ODAxiom-ho< O HODAxiom ) (AC : OD.AxiomOfChoice O HODAxiom ) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Empty import OrdUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal import ODUtil open import logic open import nat open OrdUtil O open ODUtil O HODAxiom ho< open _∧_ open _∨_ open Bool open HODBase._==_ open HODBase.ODAxiom HODAxiom open OD O HODAxiom open HODBase.HOD open AxiomOfChoice AC open import ODC O HODAxiom AC as ODC open import Level open import Ordinals import filter open import Relation.Nullary -- open import Relation.Binary hiding ( _⇔_ ) open import Data.Empty open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgebra -- open BAlgebra O open import ZProduct O HODAxiom ho< ------- -- the set of finite partial functions from ω to 2 -- -- open import Data.List hiding (filter) open import Data.Maybe data Hω2 : (i : Nat) ( x : Ordinal ) → Set n where hφ : Hω2 0 o∅ h0 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (& (Union (< nat→ω i , od∅ > , * x ))) h1 : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) (& (Union (< nat→ω i , nat→ω 1 > , * x ))) he : {i : Nat} {x : Ordinal } → Hω2 i x → Hω2 (Suc i) x record Hω2r (x : Ordinal) : Set n where field count : Nat hω2 : Hω2 count x open Hω2r hw⊆POmega : {x : Ordinal} → Hω2r x → odef (Power (Power (Omega ho<))) x hw⊆POmega {x} r = odmax1 (Hω2r.count r) (Hω2r.hω2 r) where odmax1 : {y : Ordinal} (i : Nat) → Hω2 i y → odef (Power (Power (Omega ho<) )) y odmax1 0 hφ z xz = ⊥-elim ( ¬x<0 (eq→ o∅==od∅ xz )) odmax1 (Suc i) (h0 {_} {y} hw) = pf01 where pf00 : odef ( Power (Power (Omega ho<))) y pf00 = odmax1 i hw pf01 : odef (Power (Power (Omega ho<))) (& (Union (< nat→ω i , nat→ω 0 > , * y))) pf01 z xz with eq→ *iso xz ... | record { owner = owner ; ao = case1 refl ; ox = ox } = pf02 where pf02 : (w : Ordinal) → odef (* z) w → Omega-d w pf02 w zw with eq→ *iso ox ... | case2 refl with eq→ *iso zw ... | case1 refl = ω∋nat→ω {i} ... | case2 refl = ω∋nat→ω {0} pf02 w zw | case1 refl with eq→ *iso zw ... | case1 refl = ω∋nat→ω {i} ... | case2 refl = ω∋nat→ω {i} ... | record { owner = owner ; ao = case2 refl ; ox = ox } = pf02 where pf03 : odef ( Power (Power (Omega ho<))) y pf03 = odmax1 i hw pf02 : (w : Ordinal) → odef (* z) w → Omega-d w pf02 w zw = odmax1 i hw _ (subst (λ k → odef (* k) z) (&iso) ox) _ zw odmax1 (Suc i) (h1 {_} {y} hw) = pf01 where pf00 : odef ( Power (Power (Omega ho<))) y pf00 = odmax1 i hw pf01 : odef (Power (Power (Omega ho<))) (& (Union (< nat→ω i , nat→ω 1 > , * y))) pf01 z xz with eq→ *iso xz ... | record { owner = owner ; ao = case1 refl ; ox = ox } = pf02 where pf02 : (w : Ordinal) → odef (* z) w → Omega-d w pf02 w zw with eq→ *iso ox ... | case2 refl with eq→ *iso zw ... | case1 refl = ω∋nat→ω {i} ... | case2 refl = ω∋nat→ω {1} pf02 w zw | case1 refl with eq→ *iso zw ... | case1 refl = ω∋nat→ω {i} ... | case2 refl = ω∋nat→ω {i} ... | record { owner = owner ; ao = case2 refl ; ox = ox } = pf02 where pf03 : odef ( Power (Power (Omega ho<))) y pf03 = odmax1 i hw pf02 : (w : Ordinal) → odef (* z) w → Omega-d w pf02 w zw = odmax1 i hw _ (subst (λ k → odef (* k) z) (&iso) ox) _ zw odmax1 (Suc i) (he {_} {y} hw) = pf00 where pf00 : odef ( Power (Power (Omega ho<))) y pf00 = odmax1 i hw -- -- Set of limited partial function of Omega -- HODω2 : HOD HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = & (Power (Power (Omega ho<))) ; , * x )) ; i = Suc (HwStep.i pf01) ; isHw = h0 (HwStep.isHw pf01) } where pf01 : HwStep pf01 = list→hod t x = HwStep.x pf01 list→hod (just i1 ∷ t) = record { x = & (Union ( < nat→ω (HwStep.i pf01) , nat→ω 1 > , * x )) ; i = Suc (HwStep.i pf01) ; isHw = h1 (HwStep.isHw pf01) } where pf01 : HwStep pf01 = list→hod t x = HwStep.x pf01 list→hod (nothing ∷ t) = list→hod t Hω2→3 : (x : HOD) → HODω2 ∋ x → List (Maybe Two) Hω2→3 x = lemma where lemma : { y : Ordinal } → Hω2r y → List (Maybe Two) lemma record { count = 0 ; hω2 = hφ } = [] lemma record { count = (Suc i) ; hω2 = (h0 hω3) } = just i0 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (h1 hω3) } = just i0 ∷ lemma record { count = i ; hω2 = hω3 } lemma record { count = (Suc i) ; hω2 = (he hω3) } = nothing ∷ lemma record { count = i ; hω2 = hω3 } ω→2 : HOD ω→2 = Power (Omega ho<) ω2→f : (x : HOD) → ω→2 ∋ x → Nat → Two ω2→f x lt n with ∋-p x (nat→ω n) ω2→f x lt n | yes p = i1 ω2→f x lt n | no ¬p = i0 fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n fω→2-sel f x = (Omega ho< ∋ x) ∧ ( (lt : odef (Omega ho<) (& x) ) → f (ω→nat x lt) ≡ i1 ) open import zf fω→2-wld : ( f : Nat → Two ) → ZPred HOD _∋_ _=h=_ (fω→2-sel f) fω→2-wld f = record { ψ-cong = f00 } where f01 : (x y : HOD) (ltx : odef (Omega ho<) (& x)) (lty : odef (Omega ho<) (& y)) → x =h= y → f (ω→nat x ltx) ≡ i1 → f (ω→nat y lty) ≡ i1 f01 x y ltx lty x=y feq = subst (λ k → f k ≡ i1 ) (ω→nato-cong ltx lty (==→o≡ x=y) ) feq f00 : (x y : HOD) → x =h= y → (fω→2-sel f x ) ⇔ (fω→2-sel f y) proj1 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (==→o≡ x=y) (proj1 fs) , (λ lt → f01 x y (proj1 fs) lt x=y (f02 fs)) ⟫ where f02 : (fs : fω→2-sel f x ) → f (ω→nat x (proj1 fs)) ≡ i1 -- work around for cubical bug? f02 ⟪ wx , wx→eq ⟫ = wx→eq wx proj2 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (sym (==→o≡ x=y)) (proj1 fs) , (λ lt → f01 y x (proj1 fs) lt (==-sym x=y) (f02 fs)) ⟫ where f02 : (fs : fω→2-sel f y ) → f (ω→nat y (proj1 fs)) ≡ i1 f02 ⟪ wy , wy→eq ⟫ = wy→eq wy fω→2 : (Nat → Two) → HOD fω→2 f = Select (Omega ho<) (fω→2-sel f) (fω→2-wld f) ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f ω2∋f f = power← (Omega ho<) (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {fω→2-wld f} {Omega ho<} {x} )) lt)) ω→2f≡i1 : (X i : HOD) → (iω : (Omega ho<) ∋ i) → (lt : ω→2 ∋ X ) → ω2→f X lt (ω→nat i iω) ≡ i1 → X ∋ i ω→2f≡i1 X i iω lt eq with ∋-p X (nat→ω (ω→nat i iω)) ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → odef X k) (==→o≡ (nat→ω-iso iω )) p ω2→f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω2→f X lt ) =h= X eq→ (ω2→f-iso X lt) {x} ⟪ ωx , ⟪ ωx1 , iso ⟫ ⟫ = le00 where le00 : odef X x le00 = subst (λ k → odef X k) &iso ( ω→2f≡i1 _ _ ωx1 lt (iso ωx1) ) eq← (ω2→f-iso X lt) {x} Xx = ⟪ subst (λ k → odef (Omega ho<) k) &iso le02 , ⟪ le02 , le01 ⟫ ⟫ where le02 : (Omega ho<) ∋ * x le02 = power→ (Omega ho<) _ lt (subst (λ k → odef X k) (sym &iso) Xx) le01 : (wx : odef (Omega ho<) (& (* x))) → ω2→f X lt (ω→nat (* x) wx) ≡ i1 le01 wx with ∋-p X (nat→ω (ω→nat _ wx) ) ... | yes p = refl ... | no ¬p = ⊥-elim ( ¬p (subst (λ k → odef X k ) le03 Xx )) where le03 : x ≡ & (nat→ω (ω→nato wx)) le03 = trans (sym &iso) (sym (==→o≡ ( nat→ω-iso wx ) )) ¬i1→i0 : {x : Two} → ¬ (x ≡ i1 ) → x ≡ i0 ¬i1→i0 {i0} ne = refl ¬i1→i0 {i1} ne = ⊥-elim ( ne refl ) fω→2-iso : (f : Nat → Two) → (x : Nat ) → ω2→f ( fω→2 f ) (ω2∋f f) x ≡ f x fω→2-iso f x = le01 x where le01 : (x : Nat) → ω2→f (fω→2 f) (ω2∋f f) x ≡ f x le01 x with ∋-p (fω→2 f) (nat→ω x) le01 x | yes p = subst (λ k → i1 ≡ f k ) (ω→nat-iso0 x (proj1 (proj2 p)) (==-trans *iso *iso)) (sym ((proj2 (proj2 p)) le02)) where le02 : Omega-d (& (* (& (nat→ω x)))) le02 = proj1 (proj2 p ) le01 x | no ¬p = sym ( ¬i1→i0 le04 ) where le04 : ¬ f x ≡ i1 le04 fx=1 = ¬p ⟪ ω∋nat→ω {x} , ⟪ subst (λ k → Omega-d k) (sym &iso) (ω∋nat→ω {x}) , le05 ⟫ ⟫ where le05 : (lt : Omega-d (& (* (& (nat→ω x))))) → f (ω→nato lt) ≡ i1 le05 lt = trans (cong f (ω→nat-iso0 x lt (==-trans *iso *iso))) fx=1