# HG changeset patch # User Shinji KONO # Date 1564357276 -32400 # Node ID 0b9645a655426c21925e5e74815410f5f45e02b1 # Parent 38ecc75d93ceb33b9ad762e79d9fe52e00a210a7 ... diff -r 38ecc75d93ce -r 0b9645a65542 OD.agda --- a/OD.agda Sun Jul 28 14:50:56 2019 +0900 +++ b/OD.agda Mon Jul 29 08:41:16 2019 +0900 @@ -500,14 +500,6 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not - choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → OD {suc n} - choice-func' X ∋-p not = lemma o∅ {!!} {!!} where - lemma : (ox : Ordinal {suc n} ) → ( ox o< osuc (od→ord X) ) → ((oy : Ordinal ) → oy o< ox → ¬ ( X ∋ ord→od oy ) ) → OD {suc n} - lemma ox lt l∅ with ∋-p X (ord→od ox) - lemma ox lt l∅ | yes p = ord→od ox - lemma ox (case1 x) l∅ | no ¬p = lemma (record { lv = Suc (lv ox); ord = Φ (Suc (lv ox))}) (case1 {!!}) {!!} - lemma ox (case2 x) l∅ | no ¬p = lemma (record { lv = lv ox; ord = OSuc (lv ox) (ord ox)}) {!!} {!!} - -- -- another form of regularity -- @@ -566,3 +558,19 @@ lx ≡ ly → ly ≡ lv (od→ord z) → ψ z lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s