# HG changeset patch # User Shinji KONO # Date 1666535370 -32400 # Node ID 0e0608b1953bb458a491e05e252e33b435c1a1c5 # Parent a6d97e6e5309266ac582da6c95365b98abfcb1c0 ... diff -r a6d97e6e5309 -r 0e0608b1953b src/zorn.agda --- a/src/zorn.agda Sat Oct 22 18:26:16 2022 +0900 +++ b/src/zorn.agda Sun Oct 23 23:29:30 2022 +0900 @@ -1427,35 +1427,46 @@ msup = ZChain.minsup zc (o<→≤ d ¬a ¬b c = ⊥-elim ( nat-≤> x ¬a ¬b c = tri> (λ lt → <-irr (case2 fc12) lt) (λ eq → <-irr (case1 eq) fc12) fc12 where + fc12 : * y < * x + fc12 = fcn-< {A} s {y} {x} {f} mf cy cx c + + + +-- open import Relation.Binary.Properties.Poset as Poset + +IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n) +IsTotalOrderSet A = {a b : HOD} → odef A (& a) → odef A (& b) → Tri (a < b) (a ≡ b) (b < a ) + +⊆-IsTotalOrderSet : { A B : HOD } → B ⊆ A → IsTotalOrderSet A → IsTotalOrderSet B +⊆-IsTotalOrderSet {A} {B} B⊆A T ax ay = T (incl B⊆A ax) (incl B⊆A ay) + +_⊆'_ : ( A B : HOD ) → Set n +_⊆'_ A B = {x : Ordinal } → odef A x → odef B x + +-- +-- inductive maxmum tree from x +-- tree structure +-- + +record HasPrev (A B : HOD) (x : Ordinal ) ( f : Ordinal → Ordinal ) : Set n where + field + ax : odef A x + y : Ordinal + ay : odef B y + x=fy : x ≡ f y + +record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where + field + x (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where + ct01 : * b < * a + ct01 = subst (λ k → * k < * a ) (sym eq) lt + ct-ind xa xb {a} {b} (ch-is-sup ua u≤x supa fca) (ch-init fcb) | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where + ct00 : * b < * (supf ua) + ct00 = lt + ct01 : * b < * a + ct01 with s≤fc (supf ua) f mf fca + ... | case1 eq = subst (λ k → * b < k ) eq ct00 + ... | case2 lt = IsStrictPartialOrder.trans POO ct00 lt + ct-ind xa xb {a} {b} (ch-is-sup ua ua ¬a ¬b c with ChainP.order supa (subst₂ (λ j k → j o< k ) (sym (ChainP.supu=u supb )) (sym (ChainP.supu=u supa )) c) fcb + ... | case1 eq with s≤fc (supf ua) f mf fca + ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where + ct00 : * a ≡ * b + ct00 = sym (trans (cong (*) eq) eq1) + ... | case2 lt = tri> (λ lt → <-irr (case2 ct02) lt) (λ eq → <-irr (case1 eq) ct02) ct02 where + ct02 : * b < * a + ct02 = subst (λ k → * k < * a ) (sym eq) lt + ct-ind xa xb {a} {b} (ch-is-sup ua ua ¬a ¬b c | case2 lt = tri> (λ lt → <-irr (case2 ct04) lt) (λ eq → <-irr (case1 (eq)) ct04) ct04 where + ct05 : * b < * (supf ua) + ct05 = lt + ct04 : * b < * a + ct04 with s≤fc (supf ua) f mf fca + ... | case1 eq = subst (λ k → * b < k ) eq ct05 + ... | case2 lt = IsStrictPartialOrder.trans POO ct05 lt + +∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A +∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) + +-- Union of supf z which o< x +-- +UnionCF : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) + ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD +UnionCF A f mf ay supf x + = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay supf x z } ; odmax = & A ; ¬a ¬b y sx ¬a ¬b c = ⊥-elim (<-irr (case2 sx ¬a ¬b y sx ¬a ¬b c = case1 ( λ lt → ⊥-elim ( ¬a lt ) ) + ... | tri< a ¬b ¬c with prev z a + ... | case2 mins = case2 mins + ... | case1 not with ODC.p∨¬p O (odef A z ∧ xsup z) + ... | case1 mins = case2 record { sup = z ; asm = proj1 mins ; x ¬a ¬b s