# HG changeset patch # User Shinji KONO # Date 1593931740 -32400 # Node ID 0faa7120e4b53628ceac48f66bfdddc959184ada # Parent 5544f4921a44931faa63656f23dfff1db00587ea ... diff -r 5544f4921a44 -r 0faa7120e4b5 LEMC.agda --- a/LEMC.agda Sun Jul 05 12:32:09 2020 +0900 +++ b/LEMC.agda Sun Jul 05 15:49:00 2020 +0900 @@ -23,38 +23,42 @@ open import zfc ---- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice +--- With assuption of HOD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- -record choiced ( X : OD) : Set (suc n) where +record choiced ( X : HOD) : Set (suc n) where field - a-choice : OD + a-choice : HOD is-in : X ∋ a-choice +open HOD +_=h=_ : (x y : HOD) → Set n +x =h= y = od x == od y + open choiced OD→ZFC : ZFC OD→ZFC = record { - ZFSet = OD + ZFSet = HOD ; _∋_ = _∋_ - ; _≈_ = _==_ + ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ - isZFC : IsZFC (OD ) _∋_ _==_ od∅ Select + isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → a-choice (choice-func X not ); choice = λ A {X} A∋X not → is-in (choice-func X not) } where - choice-func : (X : OD ) → ¬ ( X == od∅ ) → choiced X + choice-func : (X : HOD ) → ¬ ( X =h= od∅ ) → choiced X choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set (suc n) - ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ def X x )) ∨ choiced X + ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ odef X x )) ∨ choiced X lemma-ord : ( ox : Ordinal ) → ψ ox - lemma-ord ox = TransFinite {ψ} induction ox where - ∋-p : (A x : OD ) → Dec ( A ∋ x ) + lemma-ord ox = TransFinite1 {ψ} induction ox where + ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM ∋-p A x | case1 (lift t) = yes t ∋-p A x | case2 t = no (λ x → t (lift x )) @@ -71,59 +75,61 @@ induction x prev with ∋-p X ( ord→od x) ... | yes p = case2 ( record { a-choice = ord→od x ; is-in = p } ) ... | no ¬p = lemma where - lemma1 : (y : Ordinal) → (y o< x → def X y → ⊥) ∨ choiced X + lemma1 : (y : Ordinal) → (y o< x → odef X y → ⊥) ∨ choiced X lemma1 y with ∋-p X (ord→od y) lemma1 y | yes y