# HG changeset patch # User Shinji KONO # Date 1657437766 -32400 # Node ID 10195ebfbe2b31f021647acdf49f56ed62104e25 # Parent af1d69eb429e3240771960033456e8f83b1cfc80 ... diff -r af1d69eb429e -r 10195ebfbe2b src/OD.agda --- a/src/OD.agda Sun Jul 10 10:51:30 2022 +0900 +++ b/src/OD.agda Sun Jul 10 16:22:46 2022 +0900 @@ -223,6 +223,12 @@ ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d ∅< {x} {y} d eq | lift () +∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) +∈∅< {x} {y} d with trio< o∅ (& x) +... | tri< a ¬b ¬c = a +... | tri≈ ¬a b ¬c = ⊥-elim ( ∅< {x} {* y} (subst (λ k → odef x k ) (sym &iso) d ) ( ≡o∅→=od∅ (sym b) ) ) +... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + ∅6 : { x : HOD } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) @@ -248,7 +254,7 @@ lemma (case1 refl) = y∋x lemma (case2 refl) = y∋x --- another possible restriction. We reqest no minimality on odmax, so it may arbitrary larger. +-- another possible restriction. We require no minimality on odmax, so it may arbitrary larger. odmax<& : { x y : HOD } → x ∋ y → Set n odmax<& {x} {y} x∋y = odmax x o< & x diff -r af1d69eb429e -r 10195ebfbe2b src/zorn.agda --- a/src/zorn.agda Sun Jul 10 10:51:30 2022 +0900 +++ b/src/zorn.agda Sun Jul 10 16:22:46 2022 +0900 @@ -263,12 +263,12 @@ psup : Ordinal → Ordinal p≤z : (x : Ordinal ) → odef A (psup x) chainf : (x : Ordinal) → HOD - is-chain : (x w : Ordinal) → odef (chainf x) w → Chain A f mf ay (psup x ) w + is-chain : (x w : Ordinal) → odef (chainf x) w → Chain A f mf ay (psup x) w record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc0 : (x : Ordinal) → ZChain1 A f mf ay x ) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD - chain = ZChain1.chainf (zc0 (& A)) z + chain = UnionCF A (& A) ( λ x _ → ZChain1.chainf (zc0 (& A)) x ) field chain⊆A : chain ⊆' A chain∋init : odef chain init @@ -515,17 +515,21 @@ ... | no z ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + ... | tri≈ ¬a b ¬c = ch-init _ _ (sym b) ? where + sc0 : FClosure A f spu w + sc0 = ux + ... | tri< a ¬b ¬c = ch-is-sup 0