# HG changeset patch # User Shinji KONO # Date 1649757134 -32400 # Node ID 1546541ed4618b752fed750e363c6746186c0b59 # Parent 3c03f5bf9e16d8e7f89abd46c07d1cac783f74e2 ... diff -r 3c03f5bf9e16 -r 1546541ed461 src/filter.agda --- a/src/filter.agda Tue Apr 12 15:58:53 2022 +0900 +++ b/src/filter.agda Tue Apr 12 18:52:14 2022 +0900 @@ -229,12 +229,19 @@ f0 : filter F ∋ od∅ f0 = subst (λ k → odef (filter F) k ) (trans (cong (&) ∩-comm) (cong (&) [a-b]∩b=0 ) ) ( filter2 F F∋p F∋-p ( CAP {!!} {!!}) ) -open import zorn +-- open import zorn -MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F : Filter LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter LP -MaximumFilterExist {L} {P} LP NEG CAP F 0 (IChainSet {A} (me ax)) (d→∋ (IChainSet {A} (me ax)) icy) -Zorn-lemma-case : { A : HOD } +record Maximal ( A : HOD ) : Set (suc n) where + field + maximal : HOD + A∋maximal : A ∋ maximal + ¬maximal x +-- case 2) no > x in some chain ( maximal ) +-- case 3) countably infinite chain below x +-- +Zorn-lemma-3case : { A : HOD } → o∅ o< & A → IsPartialOrderSet A → (x : Element A) → OSup> A (d→∋ A (is-elm x)) ∨ Maximal A ∨ InFiniteIChain A (d→∋ A (is-elm x)) -Zorn-lemma-case {A} 0 ¬a ¬b c = {!!} -- can't happen - ... | yes ax = zc1 where -- we have previous ordinal and A ∋ x + ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op - zc1 : ZChain A x ∨ Maximal A - zc1 with prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) + zc1 : OSup> A (subst (OD.def (od A)) (sym &iso) ax) → ZChain A x ∨ Maximal A + zc1 os with prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) ... | case2 x = case2 x ... | case1 x with is-o∅ ( & (Gtx ax )) ... | yes no-sup = case2 {!!} ... | no sup = case1 {!!} + zc4 : ZChain A x ∨ Maximal A + zc4 with Zorn-lemma-3case 0x = zc1 y>x + ... | case2 (case1 x) = case2 x + ... | case2 (case2 x) = ⊥-elim (zc5 x) where + FC : HOD + FC = IChainSet {A} (me ax) + zc6 : InFiniteIChain A (subst (OD.def (od A)) (sym &iso) ax) → ¬ SUP A FC + zc6 = {!!} + FC-is-total : IsTotalOrderSet FC + FC-is-total = {!!} + FC⊆A : FC ⊆ A + FC⊆A = {!!} + zc5 : InFiniteIChain A (subst (OD.def (od A)) (sym &iso) ax) → ⊥ + zc5 x = zc6 x ( supP FC FC⊆A FC-is-total ) ind x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = {!!} where zc1 : ZChain A (& A)