# HG changeset patch # User Shinji KONO # Date 1719819432 -32400 # Node ID 1925debf28bb86c9631eced3ec46e42cbe85ef36 # Parent 49c3ef1e9b4f22b9e26c94b915324471cdbc86c5 Tychonoff start diff -r 49c3ef1e9b4f -r 1925debf28bb src/Tychonoff.agda --- a/src/Tychonoff.agda Mon Jul 01 16:07:57 2024 +0900 +++ b/src/Tychonoff.agda Mon Jul 01 16:37:12 2024 +0900 @@ -1,40 +1,66 @@ -{-# OPTIONS --allow-unsolved-metas #-} +{-# OPTIONS --cubical-compatible --safe #-} +open import Level +open import Ordinals +open import logic +open import Relation.Nullary + open import Level open import Ordinals -module Tychonoff {n : Level } (O : Ordinals {n}) where +import HODBase +import OD +open import Relation.Nullary +module Tychonoff {n : Level } (O : Ordinals {n}) (HODAxiom : HODBase.ODAxiom O) (ho< : OD.ODAxiom-ho< O HODAxiom ) + (AC : OD.AxiomOfChoice O HODAxiom ) where + + +open import Relation.Binary.PropositionalEquality hiding ( [_] ) +open import Relation.Binary.Definitions + +open import Data.Empty + +import OrdUtil + +open Ordinals.Ordinals O +open Ordinals.IsOrdinals isOrdinal +import ODUtil open import logic +open import nat + +open OrdUtil O +open ODUtil O HODAxiom ho< + open _∧_ open _∨_ open Bool -import OD -open import Relation.Nullary -open import Data.Empty -open import Relation.Binary.Core -open import Relation.Binary.Definitions +open HODBase._==_ + +open HODBase.ODAxiom HODAxiom +open OD O HODAxiom + +open HODBase.HOD + +open AxiomOfChoice AC +open import ODC O HODAxiom AC as ODC + +open import Level +open import Ordinals + +open import Relation.Nullary +-- open import Relation.Binary hiding ( _⇔_ ) +open import Data.Empty open import Relation.Binary.PropositionalEquality -import BAlgebra -open BAlgebra O -open inOrdinal O -open OD O -open OD.OD -open ODAxiom odAxiom -import OrdUtil -import ODUtil -open Ordinals.Ordinals O -open Ordinals.IsOrdinals isOrdinal --- open Ordinals.IsNext isNext -open OrdUtil O -open ODUtil O +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) +import BAlgebra -import ODC -open ODC O +open import ZProduct O HODAxiom ho< +open import filter O HODAxiom ho< AC +open import filter-util O HODAxiom ho< AC -open import filter O -open import filter-util O -open import ZProduct O -open import Topology O +import Relation.Binary.Reasoning.Setoid as EqHOD + +open import Topology O HODAxiom ho< AC open Filter open Topology @@ -108,17 +134,17 @@ -- if 0 < X then 0 < x ∧ P ∋ xfrom fip -- if 0 ≡ X then ¬ odef X x fip03 {X} CX fip {x} xx with trio< o∅ X - ... | tri< 0 ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ... | tri> ¬a ¬b 0

x≤0 (fip (fp00 _ _ b⊆X sb)) where x≤0 : x o< osuc o∅ - x≤0 = subst₂ (λ j k → j o< osuc k) &iso (trans (cong (&) *iso) ord-od∅ ) (⊆→o≤ (x⊆u)) + x≤0 = ? -- subst₂ (λ j k → j o< osuc k) &iso (trans (cong (&) *iso) ord-od∅ ) (⊆→o≤ (x⊆u)) fp00 : (b x : Ordinal) → * b ⊆ * X → Subbase (* b) x → Subbase (* X) x fp00 b y b ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a (subst (λ k → o∅ o< k) &iso ( ∈∅< xx ))) -- 0 ¬a ¬b c = ⊥-elim (¬x<0 c) - ufl10 : odef P (FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01) - ufl10 = FIP.L∋limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 {& P} ufl11 where + ufl10 : odef P (FIP.limit fip (subst (λ k → k ⊆ CS TP) ? CF⊆CS) ufl01) + ufl10 = FIP.L∋limit fip (subst (λ k → k ⊆ CS TP) ? CF⊆CS) ufl01 {& P} ufl11 where ufl11 : odef (* (& CF)) (& P) - ufl11 = subst (λ k → odef k (& P)) (sym *iso) record { z = _ ; az = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) *iso) (ClL TP))) } + ufl11 = eq← *iso record { z = _ ; az = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) ? ) ? -- (ClL TP) + )) } -- -- so we have a limit -- limit : Ordinal - limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 + limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) ? CF⊆CS) ufl01 ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit - ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 + ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) ? CF⊆CS) ufl01 -- -- Neigbor of limit ⊆ Filter -- @@ -350,23 +384,23 @@ -- this contradicts ufl02 pp : {v : Ordinal} → (nei : Neighbor TP limit v ) → Power P ∋ (* (Neighbor.u nei)) pp {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } z pz - = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (subst (λ k → odef k z) *iso pz ) + = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (eq→ *iso pz ) ufl00 : {v : Ordinal} → Neighbor TP limit v → filter F ∋ * v ufl00 {v} nei with ultra-filter.ultra UF (pp nei ) (NEG P (pp nei )) ... | case1 fu = subst (λ k → odef (filter F) k) &iso - ( filter1 F (subst (λ k → odef (Power P) k ) (sym &iso) px) fu (subst (λ k → u ⊆ k ) (sym *iso) (Neighbor.u⊆v nei))) where + ( filter1 F (subst (λ k → odef (Power P) k ) (sym &iso) px) fu (subst (λ k → u ⊆ k ) ? (Neighbor.u⊆v nei))) where u = * (Neighbor.u nei) px : Power P ∋ * v - px z vz = Neighbor.v⊆P nei (subst (λ k → odef k z) *iso vz ) + px z vz = Neighbor.v⊆P nei (eq→ *iso vz ) ... | case2 nfu = ⊥-elim ( ¬P\u∋limit P\u∋limit ) where u = * (Neighbor.u nei) P\u : HOD P\u = P \ u P\u∋limit : odef P\u limit - P\u∋limit = subst (λ k → odef k limit) *iso ( ufl02 (subst (λ k → odef k (& P\u)) (sym *iso) ufl03 )) where + P\u∋limit = eq→ *iso ( ufl02 (subst (λ k → odef k (& P\u)) ? ufl03 )) where ufl04 : & P\u ≡ & (Cl TP (* (& P\u))) - ufl04 = cong (&) (sym (trans (cong (Cl TP) *iso) - (CS∋x→Clx=x TP (P\OS=CS TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei) ))))) + ufl04 = cong (&) (sym (trans (cong (Cl TP) ? ) ? )) + -- (CS∋x→Clx=x TP (P\OS=CS TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei) ))))) ufl03 : odef CF (& P\u ) ufl03 = record { z = _ ; az = nfu ; x=ψz = ufl04 } ¬P\u∋limit : ¬ odef P\u limit @@ -397,9 +431,9 @@ → UFLP (ProductTopology TP TQ) F UF uflPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , * ( UFLP.limit uflq ) > ; P∋limit = Pf ; is-limit = isL } where F∋PQ : odef (filter F) (& (ZFP P Q)) - F∋PQ with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (subst (λ k → odef k z) *iso az)) ) (λ z az → proj1 (subst (λ k → odef k z) *iso az ) ) + F∋PQ with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (eq→ *iso az)) ) (λ z az → proj1 (eq→ *iso az ) ) ... | case1 fp = ⊥-elim ( ultra-filter.proper UF fp ) - ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20)) flp where + ... | case2 flp = subst (λ k → odef (filter F) k) (==→o≡ fl20) flp where fl20 : (ZFP P Q \ Ord o∅) =h= ZFP P Q fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) ) ⟫ } 0 ¬a ¬b c = ⊥-elim (¬x<0 c) apq : HOD - apq = ODC.minimal O (ZFP P Q) (0) v → filter F ∋ * v - isL {v} nei = filter1 F (λ z xz → Neighbor.v⊆P nei (subst (λ k → odef k z) *iso xz)) + isL {v} nei = filter1 F (λ z xz → Neighbor.v⊆P nei (eq→ *iso xz)) (subst (λ k → odef (filter F) k) (sym &iso) (F∋base pqb b∋l )) bpq⊆v where -- -- Product Topolgy's open set contains a subbase which is an element of ZPF p Q or ZPF P q @@ -473,13 +507,13 @@ -- subbase of product topology which includes lim is in FP, so in F -- isl00 : odef (ZFP (* (BaseP.p px)) Q) lim - isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseP.prod px)) *iso ) bl + isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseP.prod px)) ? ) bl px∋limit : odef (* (BaseP.p px)) (UFLP.limit uflp) px∋limit = isl01 isl00 refl where isl01 : {x : Ordinal } → odef (ZFP (* (BaseP.p px)) Q) x → x ≡ lim → odef (* (BaseP.p px)) (UFLP.limit uflp) isl01 (ab-pair {a} {b} bx qx) ab=lim = subst (λ k → odef (* (BaseP.p px)) k) a=lim bx where a=lim : a ≡ UFLP.limit uflp - a=lim = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj1 ( prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ab=lim) ) ))) + a=lim = subst₂ (λ j k → j ≡ k ) &iso &iso ? -- (cong (&) (proj1 ( prod-≡ (subst₂ (λ j k → j ≡ k ) ? ? (cong (*) ab=lim) ) ))) fp∋b : filter FP ∋ * (BaseP.p px) fp∋b = UFLP.is-limit uflp record { u = _ ; ou = BaseP.op px ; ux = px∋limit ; v⊆P = λ {x} lt → os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) (BaseP.op px)) lt ; u⊆v = λ x → x } @@ -487,13 +521,13 @@ f∋b = FPSet⊆F1 (subst (λ k → odef (filter FP) k ) &iso fp∋b ) F∋base {b} (gi (case2 qx)) bl = subst (λ k → odef (filter F) k) (sym (BaseQ.prod qx)) f∋b where isl00 : odef (ZFP P (* (BaseQ.q qx))) lim - isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseQ.prod qx)) *iso ) bl + isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseQ.prod qx)) ? ) bl qx∋limit : odef (* (BaseQ.q qx)) (UFLP.limit uflq) qx∋limit = isl01 isl00 refl where isl01 : {x : Ordinal } → odef (ZFP P (* (BaseQ.q qx)) ) x → x ≡ lim → odef (* (BaseQ.q qx)) (UFLP.limit uflq) isl01 (ab-pair {a} {b} px bx) ab=lim = subst (λ k → odef (* (BaseQ.q qx)) k) b=lim bx where b=lim : b ≡ UFLP.limit uflq - b=lim = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 ( prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ab=lim) ) ))) + b=lim = ? -- subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (proj2 ( prod-≡ (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) ab=lim) ) ))) fp∋b : filter FQ ∋ * (BaseQ.q qx) fp∋b = UFLP.is-limit uflq record { u = _ ; ou = BaseQ.oq qx ; ux = qx∋limit ; v⊆P = λ {x} lt → os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) (BaseQ.oq qx)) lt ; u⊆v = λ x → x } @@ -502,9 +536,9 @@ F∋base (g∩ {x} {y} b1 b2) bl = F∋x∩y where -- filter contains finite intersection fb01 : odef (filter F) x - fb01 = F∋base b1 (proj1 (subst (λ k → odef k lim) *iso bl)) + fb01 = F∋base b1 (proj1 (eq→ *iso bl)) fb02 : odef (filter F) y - fb02 = F∋base b2 (proj2 (subst (λ k → odef k lim) *iso bl)) + fb02 = F∋base b2 (proj2 (eq→ *iso bl)) F∋x∩y : odef (filter F) (& (* x ∩ * y)) F∋x∩y = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) fb01) (subst (λ k → odef (filter F) k) (sym &iso) fb02) (CAP (ZFP P Q) (subst (λ k → odef (Power (ZFP P Q)) k) (sym &iso) (f⊆L F fb01))