# HG changeset patch # User Shinji KONO # Date 1558727918 -32400 # Node ID 33860eb44e4783f2754abf4825908fd02c3c7c28 # Parent fcac01485f3296e9e98a8aa011b6b38e9e320df5 od∅' {n} = ord→od (o∅ {n}) does not work diff -r fcac01485f32 -r 33860eb44e47 ordinal-definable.agda --- a/ordinal-definable.agda Sat May 25 04:12:30 2019 +0900 +++ b/ordinal-definable.agda Sat May 25 04:58:38 2019 +0900 @@ -27,13 +27,9 @@ open Ordinal postulate - od→lv : {n : Level} → OD {n} → Nat - od→d : {n : Level} → (x : OD {n}) → OrdinalD {n} (od→lv x ) + od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} -od→ord : {n : Level} → OD {n} → Ordinal {n} -od→ord x = record { lv = od→lv x ; ord = od→d x } - _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) @@ -68,6 +64,7 @@ od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } + postulate c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y @@ -118,6 +115,19 @@ lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) +od∅' : {n : Level} → OD {n} +od∅' {n} = ord→od (o∅ {n}) + +∅1' : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅' {n} ) +∅1' {n} x xc