# HG changeset patch # User Shinji KONO # Date 1676688682 -32400 # Node ID 375615f9d60f893735d033e02594f36ed114758f # Parent 4b2f49a5a1d5843500662c658daaf24dcddec70a Func and Funcs diff -r 4b2f49a5a1d5 -r 375615f9d60f src/PFOD.agda --- a/src/PFOD.agda Mon Jan 23 10:20:55 2023 +0900 +++ b/src/PFOD.agda Sat Feb 18 11:51:22 2023 +0900 @@ -144,17 +144,6 @@ le03 : x ≡ & (nat→ω (ω→nato wx)) le03 = subst₂ (λ j k → j ≡ k ) &iso refl (cong (&) (sym ( nat→ω-iso wx ) ) ) -¬i0≡i1 : ¬ ( i0 ≡ i1 ) -¬i0≡i1 () - -¬i0→i1 : {x : Two} → ¬ (x ≡ i0 ) → x ≡ i1 -¬i0→i1 {i0} ne = ⊥-elim ( ne refl ) -¬i0→i1 {i1} ne = refl - -¬i1→i0 : {x : Two} → ¬ (x ≡ i1 ) → x ≡ i0 -¬i1→i0 {i0} ne = refl -¬i1→i0 {i1} ne = ⊥-elim ( ne refl ) - fω→2-iso : (f : Nat → Two) → ω2→f ( fω→2 f ) (ω2∋f f) ≡ f fω→2-iso f = f-extensionality (λ x → le01 x ) where le01 : (x : Nat) → ω2→f (fω→2 f) (ω2∋f f) x ≡ f x diff -r 4b2f49a5a1d5 -r 375615f9d60f src/Tychonoff.agda --- a/src/Tychonoff.agda Mon Jan 23 10:20:55 2023 +0900 +++ b/src/Tychonoff.agda Sat Feb 18 11:51:22 2023 +0900 @@ -79,6 +79,9 @@ N∋nc = ? 0 ) )) -Func : OD -Func = record { def = λ x → def ZFPair x - ∧ ( (a b c : Ordinal) → odef (* x) (& < * a , * b >) ∧ odef (* x) (& < * a , * c >) → b ≡ c ) } +record Func (A B : HOD) : Set n where + field + func : Ordinal → Ordinal + is-func : {x : Ordinal } → odef A x → odef B (func x) + +data FuncHOD (A B : HOD) : (x : Ordinal) → Set n where + felm : (F : Func A B) → FuncHOD A B (& ( Replace A ( λ x → < x , (* (Func.func F (& x))) > ))) + +FuncHOD→F : {A B : HOD} {x : Ordinal} → FuncHOD A B x → Func A B +FuncHOD→F {A} {B} (felm F) = F -FuncP : ( A B : HOD ) → HOD -FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x - ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 ? ≡ pi1 ? → pi2 ? ≡ pi2 ? ) } - ; odmax = odmax (ZFP A B) ; ) +FuncHOD=R {A} {B} (felm F) = *iso + +Funcs : (A B : HOD) → HOD +Funcs A B = record { od = record { def = λ x → FuncHOD A B x } ; odmax = osuc (& (A ⊗ B)) + ; } -- diff -r 4b2f49a5a1d5 -r 375615f9d60f src/logic.agda --- a/src/logic.agda Mon Jan 23 10:20:55 2023 +0900 +++ b/src/logic.agda Sat Feb 18 11:51:22 2023 +0900 @@ -50,6 +50,19 @@ dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) dont-orb {A} {B} (case1 a) ¬B = a +open import Relation.Binary.PropositionalEquality + +¬i0≡i1 : ¬ ( i0 ≡ i1 ) +¬i0≡i1 () + +¬i0→i1 : {x : Two} → ¬ (x ≡ i0 ) → x ≡ i1 +¬i0→i1 {i0} ne = ⊥-elim ( ne refl ) +¬i0→i1 {i1} ne = refl + +¬i1→i0 : {x : Two} → ¬ (x ≡ i1 ) → x ≡ i0 +¬i1→i0 {i0} ne = refl +¬i1→i0 {i1} ne = ⊥-elim ( ne refl ) + infixr 130 _∧_ infixr 140 _∨_