# HG changeset patch # User Shinji KONO # Date 1688526588 -32400 # Node ID 3e50aa63f550feebce356f262d333425746c7fab # Parent a295c52af3b725d29fdbd2fd3e226cf23a0bca76 ... diff -r a295c52af3b7 -r 3e50aa63f550 src/cardinal.agda --- a/src/cardinal.agda Wed Jul 05 10:57:43 2023 +0900 +++ b/src/cardinal.agda Wed Jul 05 12:09:48 2023 +0900 @@ -335,7 +335,7 @@ -- t true false ... false --- Cantor1 : { S : HOD } → S c< Power S -Cantor1 {S} f = diag4 where +Cantor1 {S} f = ? where f1 : Injection (& S) (& (Power S)) f1 = record { i→ = λ x sx → & (* x , * x) ; iB = c00 ; inject = ? }where c00 : (x : Ordinal) (lt : odef (* (& S)) x) → odef (* (& (Power S))) (& (* x , * x)) @@ -348,42 +348,52 @@ b : HODBijection (Power S) S b = subst₂ (λ j k → HODBijection j k) *iso *iso ( Bernstein f2 f1) - diag2 : {x : Ordinal } → (sx : odef S x) → (z : Ordinal) → odef (* (fun← b x sx)) z → odef S z - diag2 {x} sx z xz = funA b x sx z xz - - diag3 : {x : Ordinal } → (sx : odef S x) → odef (Power S) (fun← b x sx) - diag3 sx = diag2 sx + record inS : Set n where + field + x : Ordinal + sx : odef S x + + ins-refl : (x : inS) → record { x = inS.x x ; sx = inS.sx x } ≡ x + ins-refl x with HE.≅-to-≡ ( ∋-irr {S} (inS.sx x) (inS.sx x) ) + ... | refl = refl - diag : {x : Ordinal } → (sx : odef S x) → (z : Ordinal) → Set n - diag {x} sx z with trio< x z | ODC.p∨¬p O ( odef (* (fun← b x sx)) x) - ... | tri< a ¬b ¬c | n = odef (* (fun← b x sx)) z - ... | tri> ¬a ¬b c | n = odef (* (fun← b x sx)) z - ... | tri≈ ¬a b₁ ¬c | case1 y = ¬ odef S z - ... | tri≈ ¬a b₁ ¬c | case2 n = odef S z + inS-eq : {x y : inS } → inS.x x ≡ inS.x y → x ≡ y + inS-eq {x} {y} eq = ? where -- HE.≅-to-≡ (ca11 (inS.sx x) (inS.sx y) eq ?) where + ca11 : {x y : Ordinal} → (sx1 : odef S x) (sy1 : odef S y) → x ≡ y → sx1 ≅ sy1 + → record { x = x ; sx = sx1 } ≅ record { x = y ; sx = sy1 } + ca11 _ _ refl HE.refl = HE.refl - DIAG : {x : Ordinal } → (sx : odef S x) → HOD - DIAG {x} sx = record { od = record { def = λ z → diag sx z } ; odmax = ? ; ¬a ¬b c | n | u = funA b x sx z u - ... | tri≈ ¬a refl ¬c | case1 x₁ | u = ⊥-elim ( u sx ) - ... | tri≈ ¬a refl ¬c | case2 x₁ | u = u - - p0 : odef (Power S) o∅ - p0 z xz = ⊥-elim (¬x<0 (subst (λ k → odef k z) o∅≡od∅ xz) ) + record inSC (ib : inS → Bool) (x : Ordinal) : Set n where + field + sx : odef S x + tsx : ib record { x = x ; sx = sx } ≡ true - s : Ordinal - s = fun→ b o∅ p0 + BS : Bijection (inS → Bool ) inS + BS = record { + fun← = ca00 + ; fun→ = ca01 + ; fiso← = ca04 + ; fiso→ = ca05 + } where + ca00 : inS → inS → Bool + ca00 ix iy with ODC.p∨¬p O ( odef (* ( fun← b (inS.x ix ) (inS.sx ix))) (inS.x iy ) ) + ... | case1 y = true + ... | case2 n = false + ca01 : (inS → Bool) → inS + ca01 ib = record { x = fun→ b (& ca03) ca02 ; sx = funB b (& ca03) ca02 } where + ca03 : HOD + ca03 = record { od = record { def = λ x → inSC ib x } ; odmax = ? ;