# HG changeset patch # User Shinji KONO # Date 1654645672 -32400 # Node ID 40090ce9232c9c192339a9ea2c80f7f0b38da74c # Parent 9922bfe92278ff99c5aba51abb24c77b26ed8293 ... diff -r 9922bfe92278 -r 40090ce9232c src/zorn.agda --- a/src/zorn.agda Tue Jun 07 18:37:57 2022 +0900 +++ b/src/zorn.agda Wed Jun 08 08:47:52 2022 +0900 @@ -254,7 +254,7 @@ chainf : (b : Ordinal) → HOD chain-mono : {a b : Ordinal} → a o< b → chainf a ⊆' chainf b chain=zchain : {b : Ordinal} → chainf z ≡ ZChain.chain zchain - + record Maximal ( A : HOD ) : Set (Level.suc n) where field maximal : HOD @@ -389,21 +389,19 @@ sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc c = & (SUP.sup sp1) - ind1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) - → ((y : Ordinal) → y o< x → {y = y₁ : Ordinal} → odef A y₁ → ZChain∧Chain A y₁ f y) → - {y : Ordinal} → odef A y → ZChain∧Chain A y f x - ind1 = {!!} - -- -- create all ZChains under o< x -- - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → - ((z : Ordinal) → z o< x → {y : Ordinal} → (ya : odef A y) → ZChain A y f z ) → { y : Ordinal } → (ya : odef A y) → ZChain A y f x - ind f mf x prev {y} ay with Oprev-p x - ... | yes op = zc4 where + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) + → ((z : Ordinal) → z o< x → {y : Ordinal} → odef A y → ZChain∧Chain A y f z) → + {y : Ordinal} → odef A y → ZChain∧Chain A y f x + ind f mf x prevzc {y} ay with Oprev-p x + ... | yes op = record { zchain = zc4 ; chainf = {!!} ; chain-mono = {!!} ; chain=zchain = {!!} } where -- -- we have previous ordinal to use induction -- + prev : (z : Ordinal) → z o< x → {y : Ordinal} → odef A y → ZChain A y f z + prev z z ¬a ¬b y ¬a ¬b y ¬a ¬b c = ZChain.f-total (uzc ux) (UZFChain.chain∋z ux) (u-total1 uy ux c (UZFChain.chain∋z uy)) --- ux ⊆ uy ∨ uy ⊆ ux zorn00 : Maximal A @@ -595,13 +610,11 @@ nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx