# HG changeset patch # User Shinji KONO # Date 1656539825 -32400 # Node ID 4186c0331abb3b8108092ca666c313bdf439e9c6 # Parent cf5af048db99fa0d4959350751b0b2977491c090 sind again diff -r cf5af048db99 -r 4186c0331abb src/OrdUtil.agda --- a/src/OrdUtil.agda Sat Jun 25 17:36:18 2022 +0900 +++ b/src/OrdUtil.agda Thu Jun 30 06:57:05 2022 +0900 @@ -41,9 +41,6 @@ osuc-< {x} {y} y x x < osuc x -> y = x ∨ x < y → ⊥ osucc {ox} {oy} oy ¬a ¬b c = ⊥-elim (o<> (osucc c) oy ¬a ¬b c = ⊥-elim (¬a (ordtrans lt <-osuc ) ) + -- o<-irr : { x y : Ordinal } → { lt lt1 : x o< y } → lt ≡ lt1 xo : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ +trio<> : {n : Level} → {lx : ℕ} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< () @@ -56,16 +56,16 @@ lv x ≡ lv y → ord x ≅ ord y → x ≡ y ordinal-cong refl refl = refl -≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ +≡→¬d< : {n : Level} → {lv : ℕ} → {x : OrdinalD {n} lv } → x d< x → ⊥ ≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t -trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ +trio<≡ : {n : Level} → {lx : ℕ} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ trio<≡ refl = ≡→¬d< -trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ +trio>≡ : {n : Level} → {lx : ℕ} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ trio>≡ refl = ≡→¬d< -triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) +triOrdd : {n : Level} → {lx : ℕ} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< @@ -97,7 +97,7 @@ o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y (case2 y ¬a ¬b y ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b y ¬a ¬b c = Uz seq : Uz ≡ supf0 x @@ -657,52 +637,21 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - seq ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b₁ c = λ lt → {!!} - ... | tri≈ ¬a b ¬c | s = {!!} -- λ lt → lt - ... | tri> ¬a ¬b c | s = {!!} -- λ lt → lt - SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) - SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) - - postulate - TFcomm : { ψ : Ordinal → Set (Level.suc n) } - → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) - → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x + SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain0 A + SZ0 f mf ay = TransFinite {λ z → ZChain1 z} (sind f mf ay ) (& A) - record ZChain1 ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) : Set (Level.suc n) where - field - zc : ZChain A y f (& A) - supf = ZChain.supf zc - field - chain-mono : {x y : Ordinal} → x o≤ y → supf x ⊆' supf y - f-total : {x : Ordinal} → IsTotalOrderSet (supf x) - - SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) - → ZChain1 f mf ay - SZ1 f mf {y} ay = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) - ; chain-mono = mono sf ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where - sf : Ordinal → HOD - sf x = ZChain.supf (TransFinite (ind f mf ay) (& A)) x - sf' : Ordinal → HOD - sf' x = ZChain.supf (ind f mf ay (& A) {!!} ) x - mono : {x : Ordinal} {w : Ordinal} (sf : Ordinal → HOD) → x o≤ w → sf x ⊆' sf w - mono {a} {b} sf a≤b = TransFinite0 {λ b → a o≤ b → sf a ⊆' sf b } mind b a≤b where - mind : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → a o≤ y₁ → sf a ⊆' sf y₁) → a o≤ x → sf a ⊆' sf x - mind x prev a≤x sai = {!!} - + SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (SZ0 f mf ya) (& A) + SZ f mf {y} ay = TransFinite {λ z → ZChain A y f (SZ0 f mf ay) z } (ind f mf ay (SZ0 f mf ay) ) (& A) zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM @@ -714,16 +663,18 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m